Fluido supercrítico





Un fluido supercrítico es cualquier sustancia que se encuentre en condiciones de presión y temperatura superiores a su punto crítico.

Los estados de agregación de la materia que se conocen actualmente son cinco: sólido, líquido, gas, plasma y condensado de Bose-Einstein. Pues bien, un fluido supercrítico es un casi estado con propiedades intermedias entre líquidos y gases.

En un diagrama de fases clásico, las curvas de fusión, sublimación y vaporización muestran las zonas de coexistencia de dos fases. Tan solo hay un punto de coexistencia de tres fases, el llamado punto triple (PT). El cambio de fase se asocia a un cambio brusco de entalpía y densidad. Pero por encima del punto crítico (PC) este cambio no se produce, por tanto, podríamos definir este punto como aquel por encima del cual no se produce licuefacción al presurizar, ni gasificación al calentar; y por ende un fluido supercrítico es aquel que se encuentra por encima de dicho punto.

Caracteristicas

  • No existe interfase gas-líquido
  • La compresibilidad isotérmica se hace infinitamente positiva
  • El coeficiente de expansión térmica es infinito y positivo
  • La entalpía de vaporización es cero
  • Si la densidad se mantiene constante e igual a la densidad crítica la capacidad calorífica a volumen constante tiende al infinito
  • La densidad por encima del punto crítico depende básicamente de la presión y la temperatura, pero en cualquier caso está más cercana a la de los líquidos que a la de los gases. La densidad aumenta si lo hace la presión a temperatura constante y si disminuye la temperatura a presión constante.
  • La viscosidad es mucho más baja que la de los líquidos, lo que le confiere propiedades hidrodinámicas muy favorables
  • La bajísima tensión superficial permite una alta penetrabilidad a través de sólidos porosos y lechos empaquetados.
  • Mayores coeficientes de difusión (difusividad) que en líquidos por lo que la transferencia de materia es más favorable


De entre los fluidos supercríticos más usuales el que más se encaja con todas estas propiedades es el CO2, con la salvedad de su apolaridad que, en principio, limita su poder solvente para sustancias polares.

Como todas las sustancias, el CO2 es susceptible de ser polarizado al variar la densidad, es decir, al variar la presión y la temperatura. Pero la polarizabilidad del CO2 es mucho menor que la de los hidrocarburos, por ejemplo, para conseguir una polarizabilidad por unidad de volumen que sea comparable a la del ciclohexano líquido se necesita una presión de 2700 bar y 45 ºC. Existe una alternativa al uso de condiciones tan extremas que consiste en la adición de pequeñas cantidades (<10%) de modificadores, sustancias polares que añadidas al CO2 varían enormemente la polaridad del fluido extractante. En caso de estar hablando de la obtención de ingredientes alimentarios (principal empleo de la extracción supercrítica) sólo se podrían emplear como modificadores compuestos denominados GRAS (Generally Recognized As Safe); entre ellos se encuentran el etanol y el agua.

Actualmente la legislación española en materia de disolventes de extracción empleados en el ámbito alimentario es competencia exclusiva de la Comisión Europea (Libro blanco sobre Seguridad Alimentaria, COM (1999) 719, de 12 enero) quien decidió una aproximación de las legislaciones de los estados miembros sobre los disolventes de extracción utilizados en la fabricación de productos alimenticios y de sus ingredientes en junio de 1988, por medio de la directiva 88/344/CEE. Dicha directiva se encuentra traspuesta al sistema legislativo español por medio del RD 472/1990, de 6 abril. Tras la última modificación efectuada (RD. 2667/1998), la lista de disolventes que pueden emplearse, respetando siempre las “buenas prácticas de fabricación”, tanto para extracción como para redisolución de extractos, es la siguiente: propano, butano, acetato de butilo, acetato de etilo, etanol, dióxido de carbono, acetona, protóxido de nitrógeno. Esta legislación define un “disolvente de extracción” como un disolvente utilizado en el proceso de extracción durante el tratamiento de materias primas, de productos alimenticios, de componentes o de ingredientes de dichos productos, que se elimine y que pueda provocar la presencia, involuntaria pero técnicamente inevitable, de residuos o de derivados en el producto alimenticio o en el ingrediente. Y es ahí donde reside otra de las ventajas presentadas por el CO2, que es la de ser gas a temperatura y presión ambiental con lo que la eliminación del disolvente es inmediata y la presencia de residuos es prácticamente nula. No como ocurre en las extracciones “clásicas” en las que se emplean disolventes orgánicos, que no sólo son tóxicos muchos de ellos sino, que además son realmente perjudiciales para el medio ambiente.

Afortunadamente existe, en la actualidad, una tendencia dirigida hacia la eliminación de este tipo de disolventes, los dos ejemplos más claros de dicha tendencia son el Protocolo de Montreal (1989) relativo a las sustancias que agotan la capa de ozono y la Convención de Estocolmo sobre contaminantes orgánicos persistentes, que entró en vigor en mayo de 2004. Ambos tratados fueron propuestos por el Programa de las Naciones Unidas para el Medio Ambiente (Pnuma) y ratificados por una amplia mayoría de países entre ellos España. De hecho el CO2 no sólo está admitido en ambos tratados sino que está reconocido por las normas del Codex Alimentarius como apto para su empleo en alimentos ecológicos (Guidelines for the production, processing, labelling and marketing of organically produced foods (GL 32–1999, Rev. 1 – 2001)).

En un proceso de extracción industrial uno o más componentes se separan de la mezcla introducida, siendo el producto deseado tanto el extracto como el producto “refinado”. Al tratarse los alimentos de mezclas altamente complejas lo más habitual es que los extractos también lo sean por lo cual es muy habitual hablar de fraccionamiento de extractos. El fraccionamiento en condiciones supercríticas consiste en una caída en cascada de la densidad con la consiguiente precipitación en cascada de los compuestos extraídos en los separadores donde se produce esta disminución de densidad.

 
Este articulo se basa en el articulo Fluido_supercrítico publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.