En mecánica cuántica, una función de onda (Ψ) es una forma de describir el estado físico de un sistema de partículas. Usualmente es una función compleja y de cuadrado integrable de las coordenadas espaciales de cada una de las partículas. Las propiedades mencionadas de la función de onda permiten interpretarla como una función de cuadrado integrable. La ecuación de Schrödinger proporciona una ecuación determinista para explicar la evolución temporal de la función de onda y, por tanto, del estado físico del sistema en el intervalo comprendido entre dos medidas (cuando se hace una medida de acuerdo con el postulado IV la evolución no es determinista). Históricamente el nombre función de onda se refiere a que el concepto fue desarrollado en el marco de la primera física cuántica, donde se interpretaba que las partículas podían ser representadas mediante una onda física que se propaga en el espacio. En la formulación moderna, la función de onda se interpreta como un objeto mucho más abstracto, que representa un elemento de un cierto espacio de Hilbert de dimensión infinita que agrupa a los posibles estados del sistema. Conocimientos adicionales recomendados
Formulación original de Schrödinger-De BroglieEn 1923 De Broglie propuso la llamada hipótesis de De Broglie por la que a cualquier partícula podía asignársele un paquete de ondas materiales o superposición de ondas de frecuencia y longitud de onda asociada con el momento lineal y la energía:
donde donde Ek(p) = P2 / 2m. Si en lugar de las expresiones clásicas del momento lineal y la energía se usan las expresiones relativistas, lo cual da una descripción más precisa para partículas rápidas, un cálculo algo más largo, basado en la velocidad de grupo, lleva a la misma conclusión. La fórmula de De Broglie encontró confirmación experimental en 1927 un experimento que probó que la ley de Bragg, inicialmente formulada para rayos X y radiación de alta frecuencia, era también válida para electrones lentos si se usaba como longitud de onda la longitud postulada por De Broglie. Esos hechos llevaron a los físicos a tratar de formular una ecuación de ondas cuántica que en el límite clásico macroscópico se redujera a las ecuaciones de movimiento clásicas o leyes de Newton. Dicha ecuación ondulatoria había sido formulada por Erwin Schrödinger en 1925 y es la celebrada Ecuación de Schrödinger:
donde El concepto actual de función de onda es algo más abstracto y se basa en la interpretación del campo de materia no como campo físico existente sino como amplitud de probabilidad de presencia de materia. Esta interpretación, introducida por Max Born, le valió la concesión del premio Nobel de física en 1954. Formulación moderna de Von NeumannLos vectores en un espacio vectorial se expresan generalmente con respecto a una base (un conjunto concreto de vectores que "expanden" el espacio, a partir de los cuales se puede construir cualquier vector en ese espacio mediante una combinación lineal). Si esta base se indexa con un conjunto discreto (finito, contable), la representación vectorial es una "columna" de números. Cuando un vector de estado mecanocuántico se representa frente a una base continua, se llama función de ondas. FormalizaciónPara operadores autoadjuntos, gracias al teorema espectral, puede construirse el equivalente de bases vectoriales dependientes de un índice continuo (infinito, incontable). Si se considera el operador de posición Pertenecientes a un espacio equipado de Hilbert Nótese que aunque los estados propios Puesto que las funciones de onda así definidas, que son de cuadrado integrable, sí forman un espacio de Hilbert isomorfo y homeomorfo al original, el cuadrado del módulo de la función de onda puede ser interpretado como la densidad de probabilidad de presencia de las partículas en una determinada región del espacio. Un tratamiento análogo al anterior usando vectores propios del operador momento lineal El nombre espacio-k proviene de que Problemas de nomenclaturaPor la relación concreta entra la función de ondas y la localización de una partícula en un espacio de posiciones, muchos textos sobre mecánica cuántica tienen un enfoque "ondulatorio". Así, aunque el término función de ondas se use como sinónimo "coloquial" para vector de estado, no es recomendable, ya que no sólo existen sistemas que no pueden ser representados por funciones de ondas, sino que además el término función de ondas lleva a imaginar que hay algún medio que está ondulando en sentido mecánico. Véase tambiénEnlaces externos
|
|
Este articulo se basa en el articulo Función_de_ondas publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores. |