La reacción en cadena de la polimerasa, conocida como PCR por sus siglas en inglés (Polymerase Chain Reaction), es una técnica de biología molecular descrita en 1986 por Kary Mullis,[1] cuyo objetivo es obtener un gran número de copias de un fragmento de ADN particular, partiendo de un mínimo; en teoría basta partir de una única copia de ese fragmento original, o molde. Esta técnica sirve para amplificar un fragmento de ADN; su utilidad es que, tras la amplificación, resulta mucho más fácil identificar con una muy alta probabilidad virus o bacterias causante de una enfermedad, identificar personas (cadáveres) o hacer investigación científica sobre el ADN amplificado. Estos usos derivados de la amplificación han hecho que se convierta en una técnica muy extendida, con el consiguiente abaratamiento del equipo necesario para llevarla a cabo. Conocimientos adicionales recomendados
Fundamento e importanciaEsta técnica se fundamenta en la propiedad natural de las ADN polimerasas para replicar hebras de ADN, para lo cual emplea ciclos de altas y bajas temperaturas alternadas para separar las hebras de ADN recién formadas entre sí tras cada fase de replicación y, a continuación, dejar que vuelvan a unirse a polimerasas para que vuelvan a duplicarlas. Inicialmente la técnica era lenta, ya que las polimerasas se desnaturalizaban al realizar los cambios de temperatura y era necesario agregar nuevas polimerasas en cada ciclo. Puesto que las temperaturas del ciclo (95 ºC en las fases de desnaturalización del ADN) suponen la inmediata desnaturalización de toda proteína, se emplean ADN polimerasas termoestables, extraídas de microorganismos adaptados a vivir a esas temperaturas, restrictivas para la mayoría de los seres vivos. Dichos microorganismos, generalmente arqueas, son: Thermus aquaticus (polimerasa Taq), Pyrococcus furiosus (Pfu), Thermococcus litoralis (Vent) y Thermus termophilus (Tth). Generalmente se emplean mezclas de polimerasas muy procesivas (Taq) con otras con corrección de errores (Pfu, Vent). Hoy, todo el proceso de la PCR está automatizado mediante un aparato llamado termociclador, que permite calentar y enfriar los tubos de reacción para controlar la temperatura necesaria para cada etapa de la reacción (ver más abajo). Muchos termocicladores modernos hacen uso del efecto Peltier, que permite tanto calentar como enfriar los tubos simplemente invirtiendo la corriente eléctrica. Los tubos usados para PCR tienen una pared muy fina, lo que favorece una buena conductividad térmica, permitiendo que se alcance rápidamente el equilibrio térmico. Casi todos los termocicladores tienen un sistema que calienta la tapa de cierre con el fin de evitar la condensación sobre los tubos de reacción. Los termocicladores más antiguos que carecían de este sistema, solucionaban el problema de la condensación con una capa de aceite en la parte superior de la mezcla de reacción o con un poco de cera dentro de los tubos. Por lo general, la PCR es una técnica común y normalmente indispensable en laboratorios de investigación médica y biológica para una gran variedad de aplicaciones. Entre ellas se incluyen la clonación de ADN para la secuenciación, la filogenia basada en ADN, el análisis funcional de genes, el diagnóstico de trastornos hereditarios, la identificación de huellas genéticas (usada en técnicas forenses y tests de paternidad) y la detección y diagnóstico de enfermedades infecciosas. ReactivosPara realizar la técnica se necesitan:
Ciclo de amplificaciónEl proceso de PCR por lo general consiste en una serie de 20 a 35 cambios repetidos de temperatura llamados ciclos; cada ciclo suele consistir en 2-3 pasos de temperaturas. La PCR común se realiza con ciclos que tienen tres pasos de temperatura. Los pasos de ciclos a menudo están precedidos por un choque térmico (llamado "hold") a alta temperatura (> 90°C), y seguido por otro hold al final del proceso para la extensión de producto final o el breve almacenaje. Las temperaturas usadas y el tiempo aplicado en cada ciclo dependen de gran variedad de parámetros. Éstos incluyen la enzima usada para la síntesis de ADN, la concentración de iones divalentes y dNTPs en la reacción, y la temperatura de unión de los cebadores. InicializaciónEste paso consiste en llevar la reacción hasta una temperatura de 94-96ºC (ó 98ºC si se está usando una polimerasa termoestable extrema), que se mantiene durante 1-9 minutos. Esto sólo es necesario para ADN polimerasas que requieran activación por calor. DesnaturalizaciónEn primer lugar, se desnaturaliza el ADN (se separan las dos hebras de las cuales está constituido). Este paso puede realizarse de diferentes modos, siendo el calentamiento (94-95ºC) de la muestra la forma más habitual. La temperatura a la cual se decide realizar la desnaturalización depende, por ejemplo, de la proporción de G+C que tenga la hebra, como también del largo de la misma. Otros métodos, raramente empleados en la técnica de la PCR, serían la adición de sales o agentes químicos capaces de realizar la desnaturalización. Alineamiento/Unión del cebadorA continuación se producirá la hibridación del cebador, es decir, el cebador se unirá a su secuencia complementaria en el ADN molde. Para ello es necesario bajar la temperatura a 50-65ºC durante 20-40 segundos (según el caso), permitiendo así el alineamiento. Los puentes de hidrógeno estables entre las cadenas de ADN (unión ADN-ADN) sólo se forman cuando la secuencia del cebador es muy similar a la secuencia del ADN molde. La polimerasa une el híbrido de la cadena molde y el cebador, y empieza a sintetizar ADN. Los cebadores actuarán como límites de la región de la molécula que va a ser amplificada. Extensión/Elongación de la cadenaActúa la ADN polimerasa, tomando el ADN molde para sintetizar la cadena complementaria y partiendo del cebador como soporte inicial necesario para la síntesis de nuevo ADN. La polimerasa sintetiza una nueva hebra de ADN complementaria a la hebra molde añadiendo los dNTP's complementarios en dirección 5'→ 3', uniendo el grupo 5'- fosfato de los dNTPs con el grupo 3'- hidroxilo del final de la hebra de ADN creciente (la cual se extiende). La temperatura para este paso depende de la ADN polimerasa que usemos. Para la Taq polimerasa, la temperatura de máxima actividad está en 75-80°C (comúnmente 72°C). El tiempo de extensión depende tanto de la ADN polimerasa usada como de la longitud del fragmento de ADN que se va a amplificar. Hay una regla básica: en su temperatura óptima, la polimerasa de ADN polimerizará mil bases en un minuto. Elongación FinalEtapa única que se lleva a cabo a una temperatura de 70-74°C durante 5-15 minutos tras el último ciclo de PCR. Con ella se asegura que cualquier ADN de cadena simple restante sea totalmente ampliado. ConservaciónEste paso se lleva a cabo a 4-15°C durante un tiempo indefinido para conservar la reacción a corto plazo. La PCR normalmente se realiza con un volumen de reacción de 0.2-0.5 ml, en pequeños tubos de 15-100 μl que se colocan en el termociclador. Para verificar que la PCR ha generado el fragmento de ADN previsto, se emplean técnicas de electroforesis, que separan los fragmentos de ADN generados de acuerdo a su carga, esto es, longitud, y, en menor medida y dependiendo de la matriz empleada, a su tamaño: típicamente se emplean la electroforesis en gel de agarosa, para fragmentos grandes; en acrilamida, para los más pequeños; y, de forma más rápida y aplicable a la PCR asociada a marcaje fluorescente, la electroforesis capilar.[2] El/los tamaño/s de los productos de la PCR vienen determinados por un marcador de peso molecular de ADN, el cual contiene fragmentos de ADN de tamaño conocido, y que se corre en el gel junto con los productos de PCR. Optimización de la PCREn la práctica, la PCR puede fallar por varias razones, pero normalmente es debido a su sensibilidad a la contaminación, que a veces provoca la amplificación de ADN "falso". Por esto, se han desarrollado un gran número de técnicas y procesos para optimizar la PCR:
Tipos de PCRPCR anidadaTécnica muy sensible de PCR en la que el producto de una amplificación es utilizado como molde para realizar una segunda amplificación con cebadores que se ubican dentro de la primera secuencia amplificada. Este tipo de PCR es muy específica. PCR in situPCR realizada sobre preparaciones fijas sobre un portaobjetos. La PCR in situ consiste en una reacción de PCR en secciones histológicas o células, donde los productos generados pueden visualizarse en el sitio de amplificación. Es realizada sobre preparaciones fijas en un portaobjetos. En la técnica de PCR in situ se realiza una primera amplificación de ADN blanco y luego detección mediante hibridación in situ convencional con sondas de ADN/ARN. De esta manera pueden detectarse cantidades pequeñísimas de genoma. Esta tecnología es de gran alcance en la capacidad de amplificar específicamente una población de secuencias de menor representación. PCR multiplexPCR en la cual se amplifica más de una secuencia en una misma reacción. Emplea dos o más pares de primers en único tubo con el fin de amplificar simultáneamente múltiples segmentos de ADN. Consiste en combinar en una única reacción todos pares de primers de los sistemas que queremos amplificar simultáneamente, junto con el resto de los reactivos de la reacción en cantidades suficientes. sus ventajas: se obtiene la información de varios loci en una sola reacción, menor cantidad de templado para el análisis, menor cantidad de reactivos, rápida construcción de base de datos. RT-PCRDonde el molde inicial es ARN y se requiere de una transcriptasa inversa, como Tth, para realizar la conversión del ARN a un tipo de ADN llamado ADNc (ADN complementario). PCR tiempo realReacción de PCR cuya principal característica es que permite cuantificar la cantidad de ADN o ARN presentes en la muestra original. Se puede dividir en las técnicas basadas en fluorocromos no específicos y en técnicas basadas en sondas específicas. En las técnicas basadas en fluorocromos, el ADN, que ve multiplicada su cantidad con cada ciclo se une al fluorocromo (generalmente SYBR Green) produciendo fluorescencia que es medida por el termociclador apto para RealTime PCR. Permite cuantificar sólo una secuencia por reacción pero tiene la ventaja de utilizar primers normales para su realización. Es mucho más económica que la realización de Realtime PCR con sondas específicas. Las técnicas basadas en sondas específicas utilizan una sonda unida a dos fluorocromos que hibrida en la zona intermedia entre el cebador directo (forward) y el inverso (reverse), cuando la sonda está intacta, presentan una transferencia energética de fluorescencia por resonancia (FRET). Dicha FRET no se produce cuando la sonda está dañada y los dos fluorocromos están distantes, producto de la actividad 5'-3' exonucleasa de la ADN polimerasa. Esto permite monitorizar el cambio del patrón de fluorescencia y deducir el nivel de amplificación del gen. La mayoría de estos inconvenientes se han solucionado con la introducción de la PCR realizada en tiempo real (PCR-RT), que elimina cualquier proceso post-PCR puesto que monitoriza la progresión de la amplificación en el momento en que ocurre. A diferencia de la PCR convencional (en punto final), que mide la acumulación ADN al final de un número predeterminado de ciclos, con PCR-RT esto se hace durante el proceso de amplificación usando fluorescencia, de forma que su aumento es proporcional a la cantidad de ADN formada. El proceso se puede automatizar fácilmente usando un sistema que realice la amplificación (termociclador) y que a su vez sea capaz de leer fluorescencia. Existe una amplia oferta de aparatos en el mercado. La mayoría pueden trabajar con las diversas opciones de marcado fluorescente y son "abiertos", es decir, permiten programar las condiciones de amplificación y lectura de forma que su uso no queda limitado a unos reactivos determinados. ADN complementario Variaciones de la PCR básica:
AplicacionesLa técnica de la PCR tiene multitud de aplicaciones: ya en ciencia básica, como herramienta de detección y/o generación de acervos de fragmentos de ADN de interés; ya en ciencia aplicada, como elemento resolutivo en sí mismo, por ejemplo en diagnóstico clínico. InvestigaciónLa PCR convencional se emplea como base para multitud de técnicas en el laboratorio debido a su robustez y rapidez. De este modo, la PCR de punto final permite controlar y detectar los fragmentos de ADN de interés. Una aplicación de la PCR de extrema importancia es la clonación de secuencias de ADN en vectores, como pueden ser los plásmidos. Para ello, se emplean cebadores que contienen en su extremo 5' una corta secuencia que permite la interacción posterior con otra complementaria situada en el vector de clonación a emplear. Por ejemplo, se puede incluir una diana de restricción en dichos cebadores, de modo que, y si ésta no existía previamente en el fragmento y es única en el vector, pueda efectuarse una ligación mediante la ligasa de T4 tras la digestión con la enzima de restricción apropiada de ambos elementos. Otro método asimilable a esta vía es el empleo de la recombinación dirigida; esto es, se adapta al 5' de los cebadores una secuencia que faculta a una recombinasa la recombinación dirigida con un vector dado.[3] MedicinaEn medicina, la PCR se emplea fundamentalmente como herramienta de diagnosis(Coleman y Tsongalis, 2006):
Paleontología, antropología biológica, y ciencias forensesLos campos de la paleontología, antropología biológica y la medicina y antropología forense se han visto enormemente beneficiados por esta técnica, puesto que todas ellas construyen con frecuencia el conocimiento de sus correspondientes disciplinas gracias a restos o huellas de seres vivos. Uno de los materiales biológicos que más información puede proporcionar es el ADN.
Agronomía y diversidadTal y como la PCR multiplex permite producir huellas genéticas de individuos concretos, dentro del marco de la genética forense, existen métodos basados en la PCR que permiten discernir entre grupos infraespecíficos de cultivos de interés agronómico; por ejemplo, de cultivares.[7] Para ello, se emplean oligonucleótidos de un tamaño lo suficientemente pequeño como para que ceben de forma relativamente inespecífica, aunque siempre de tal forma que produzcan un patrón de bandas discreto e interpretable. De este modo, la pauta obtenida tras la electroforesis de los fragmentos tiende a agrupar a los individuos de mayor semejanza, que poseen un comportamiento similar, de los que divergen. HistoriaEn 1971, un artículo publicado por Kleppe et al. en Journal of Molecular Biology describió por primera vez un método que usaba enzimas para replicar una secuencia pequeña de ADN con primers in vitro.[8] Sin embargo, este temprano ejemplo del principio básico de la PCR no recibió mucha atención, y la invención de la reacción en cadena de la polimerasa en 1983 es generalmente atribuida a Kary Mullis.[9] [10] Mullis ganó el Premio Nobel por su trabajo en PCR. Algo muy a tener en cuenta en la PCR es que la ADN polimerasa que se use sea capaz de soportar las altas temperaturas de >90ºC necesarias para la separación de las dos hebras de ADN de la doble hélice tras cada ciclo de replicación. Las ADN polimerasas que se utilizaron originariamente para los experimentos in vitro previos a la PCR no eran capaces de soportar estas altas temperaturas, por lo que los primeros procedimientos para replicar el ADN eran muy ineficientes, largos y requerían grandes cantidades de ADN polimerasa. El descubrimiento en 1976 de la Taq polimerasa, una polimerasa de ADN extraída de la bacteria termófila Thermus aquaticus que habita medios de muy alta temperatura (50-80ºC), eliminó los grandes inconvenientes del método de la PCR. Esta ADN polimerasa es estable a altas temperaturas, permaneciendo activa hasta después de la desnaturalización del ADN, eliminando la necesidad de añadir a la reacción nueva polimerasa tras cada ciclo. Este descubrimiento permitió automatizar el proceso, antes tan tedioso, acoplándolo al uso del termociclador. Al mismo tiempo que desarrollaba la PCR en 1983, Mullis trabajaba en Emeryville, California (EE UU), para una de las primeras empresas biotecnológicas, Cetus Corporation, donde era responsable de sintetizar cadenas cortas de ADN. Mullis afirma que concibió la idea para la PCR una noche mientras cruzaba la Autopista de la Costa Pacífica (EE UU) en su coche.[9] Estaba imaginando una nueva forma de analizar mutaciones en el ADN cuando se percató de que, en lugar de eso, había inventado un método para amplificar regiones específicas de ADN mediente ciclos de duplicación repetidos usando ADN polimerasas. Mullis atribuye la invención de esta técnica a los efectos de la droga psicodélica y alucinógena LSD.[11] En la revista Scientific American, Mullis resumió el procedimiento: "Comenzando con una única molécula del material genético ADN, la PCR puede generar 100 billones de moléculas iguales en una tarde. La reacción es fácil de hacer, no requiere más que un tubo de pruebas, unos pocos reactivos simples y una fuente de calor."[12] Fue premiado con el Premio Nobel de Química en 1993 por su invención, y siete años después, él y sus colegas del Cetus llevaron a la práctica su propuesta. Sin embargo, han aparecido controversias y diferentes versiones sobre las contribuciones intelectuales y prácticas de otros científicos al trabajo de Mullis, y sobre si él fue el inventor único del principio de la PCR. Guerras de patentesLa técnica de la PCR fue patentada por Cetus Corporation, donde Mullis trabajaba cuando inventó la técnica en 1983. La enzima Taq polimerasa fue también cubierta de patentes. Tuvieron lugar varios pleitos relacionados con la técnica, incluyendo un pleito fracasado generado por DuPont. La compañía farmacéutica Hoffmann-La Roche adquirió los derechos de las patentes en 1992 y actualmente mantiene las que aún están protegidas.[13] [14] ReferenciasCitadas en el texto
Referencias generales
Enlaces externos
|
|
Este articulo se basa en el articulo Reacción_en_cadena_de_la_polimerasa publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores. |