La Secuenciación de ADN es un conjunto de métodos y técnicas bioquímicas cuya finalidad es la determinación del orden de los nucleótidos (A, C, G y T) en un oligonucleótido de ADN. La secuencia de ADN constituye la información genética heredable del núcleo celular, los plásmidos, la mitocondria y cloroplastos que forman la base de los programas de desarrollo de los seres vivos. Así pues, determinar la secuencia de ADN es útil en el estudio de la investigación básica de los procesos biológicos fundamentales, así como en campos aplicados, como la investigación forense. El desarrollo de la secuenciación del ADN ha acelerado significativamente la investigación y los descubrimientos en biología. Las técnicas actuales permiten realizar esta secuenciación a gran velocidad, lo cual ha sido de gran importancia para proyectos de secuenciación a gran escala como el Proyecto Genoma Humano. Otros proyectos relacionados, en ocasiones fruto de la colaboración de científicos a escala mundial, han establecido la secuencia completa de ADN de muchos genomas de animales, plantas y microorganismos.
Conocimientos adicionales recomendados
Los iniciosDurante treinta años, la mayor parte de la secuenciación de ADN se llevó a cabo con el método de terminación de la cadena desarrollado por Frederick Sanger y colaboradores en 1975.[1] [2] Antes del desarrollo de métodos rápidos de secuenciación del ADN a principios de los 70 por Sanger en Inglaterra y Walter Gilbert y Allan Maxam en Harvard,[3] [4] se utilizaban varios métodos de laboratorio. Por ejemplo, en 1973[5] Gilbert y Maxam publicaron una secuencia de 24 pares de bases utilizando un método conocido como "de punto corrido" (wandering spot). La secuenciación del ARN, que por razones técnicas es más sencilla de llevar a cabo que la del ADN, se desarrolló con anterioridad a la del ADN. El mayor hito en la secuenciación del ARN, que data de la era previa al ADN recombinante, es la secuencia del primer gen completo y del genoma completo del Bacteriófago MS2, identificado y publicado por Walter Fiers y colaboradores de la Universidad de Gante.[6] [7] Secuenciación de Maxam-GilbertEn 1976-1977, Allan Maxam y Walter Gilbert desarrollaron un método para secuenciar ADN basado en la modificación química del ADN y posterior escisión en bases específicas[8] Aunque Maxam y Gilber publicaron su secuenciación química dos años antes del trascendental artículo de Sanger y Coulson sobre su método de secuenciación "más-menos",[9] [10] la secuenciación de Maxam y Gilbert rápidamente se hizo más popular hasta que se pudo utilizar ADN directamente, mientras que el método inical de Sanguer requería que cada comienzo de lectura fuera clonado para producir un ADN de cadena simple. No obstante, con el desarrollo y mejora del método de terminación de la cadena (ver más adelante), la secuenciación de Maxam y Gilbert ha quedado en desuso debido a su complejidad técnica, el uso extensivo de productos químicos peligrosos y dificultades para escalarla. Además, a diferencia del método de terminación de la cadena, los reactivos que se usan en el método de Maxam y Gilbert no se pueden adaptar para utilizrse en un kit biológico estándar. En resumen, el método requiere marcaje radiactivo en uno de los extremos y la purificación del fragmento de ADN que se desea secuenciar. El tratamiento químico genera rupturas en una pequeña proporción de uno o dos de los cuatro nucleótidos en cada una de las cuatro reacciones (G, A+G, C, C+T). De ese modo se genera una serie de fragmentos marcados a partir del final marcado radiactivamente hasta el primer lugar de "corte" en cada molécula. Los fragmentos posteriormente se separan por tamaño mediante electroforesis en gel, separando los productos de las cuatro reacciones en cuatro carreras distintas, pero una al lado de la otra. Para visualizar los fragmentos generados en cada reacción, se hace una autoradiografía del mismo, lo que proporciona una imagen de una serie de bandas oscuras correspondientes a los fragmentos marcados con el radioisótopo, a partir de las cuales se puede inferir la secuencia. Conocido en ocasiones como "secuenciación química", este método se originó en el estudio de las interacciones entre ADN y proteínas (huella genética), estructura de los ácidos nucleicos y modificaciones epigenéticas del ADN, y es en estos campos donde aún tiene aplicaciones importantes. Métodos de terminación de la cadena
Mientras que el método de secuenciación química de Maxam y Gilbert y el método más-menos de Sanger y Coulson eran órdenes de magnitud más rápidos que los métodos previos, el método de terminación de la cadena desarrollado por Sanger era incluso más eficiente y rápidamente se convirtió en el método de elección. La Técnica de Maxam-Gilbert requiere el uso de productos químicos altamente tóxicos y grandes cantidades de ADN marcado radiactivamente, mientras que el método de terminación de la cadena utiliza pocos reactivos tóxicos y cantidades menores de radiactividad. El principio clave del método de Sanger es el uso de didesoxinucleótidos trifosfato (ddNTPs) como terminadores de la cadena de ADN. El método clásico de terminación de la cadena o método de Sanger necesita una hebra molde de ADN de cadena sencilla, un cebador de ADN, una ADN polimerasa con nucleótidos marcados radiactivamente o mediante fluorescencia y nucleótidos modificados que terminan la elongación de la cadena de ADN. La muestra de ADN se divide en cuatro reaciones de secuenciación separadas que contienen los cuatro desoxinucleotídos estándar (dATP, dGTP, dCTP and dTTP) y una ADN polimerasa. En cada reacción se añade solo uno de los cuatro didesoxinucleótidos (ddATP, ddGTP, ddCTP, o ddTTP). Estos didesoxinucleótidos terminan la elongación de la cadena al carecer un grupo 3'-oOH que se necesita para la formación del enlace fosfodiéster entre dos nucleótidos durante la elongación de la cadena de ADN. La incorporación de un didesoxinucleótido en la cadena naciente de ADN termina su extensión, lo que produce varios fragmentos de ADN de longitud variable. Los didesoxinucleótidos se añaden a concentraciones lo suficientemente bajas como para que produzcan todas las posibilidades de fragmentos y al mismo tiempo sean suficientes para realizar la secuenciación. Los fragmentos de ADN sintetizados y marcados de novo son desnaturalizados por calor y separados por tamaño (con una resolución de un solo nucleótido) mediante electroforesis en gel de poliacrilamida - urea. Cada una de las cuatro reacciones de síntesis se corre en carriles individuales (Carril A, T, G y C) y se visualizan las bandas de ADN mediante autoradiografía o luz ultravioleta, y la secuencia de ADN se puede leer directamente a partir de la placa de rayos X o de la imagen del gel. En la imagen de la derecha, la película de rayos-X se expuso directamente al gel de modo que las bandas oscuras corresponden a los fragmentos de ADN de diferentes longitudes. Una banda oscura en un carril indica un fragmento de ADN que es el resultado de una terminación de la cadena tras la incorporación de un didesoxinucleótido (ddATP, ddGTP, ddCTP, or ddTTP). El nucleótido terminal puede ser identificado de acuerdo al didesoxinucleótido que se añadió en la reacción que dio lugar a esa banda. Las posiciones relativas entre las cuatro calles se utilizan entonces para leer (de abajo a arriba) la secuencia de ADN como se indica.
Existen algunas variaciones técnicas del método de secuenciación de terminación de la cadena. En un método, los framentos de ADN son marcados con nucleótidos marcados con fósforo radiactivo. Como alternativa se puede utilizar un cebador marcado en el extremo 5' mediante un colorante fluorescente. Se siguen necesitando cuatro reacciones, pero los fragmentos de ADN marcados con colorantes se pueden leer utilizando un sistema óptico, lo que facilita un análisis más rápido y económico y su automatización. Esta variante se conoce como "secuenciación mediante colorantes acoplados al cebador" (dye-primer sequencing). El último avance de L Hood y colaboradores[11] [12] desarrollando ddNTPs y cebadores con marcaje fluorescente señala el marco para una secuenciación de ADN automatizada y de alto rendimiento. Los diferentes métodos de terminación de la cadena han simplificado en gran medida la cantidad de trabajo y planificación necesaria para la secuenciación de ADN. Por ejemplo, el kit "Sequenase" de la casa USB Biochemicals, basado en el método de terminación de la cadena contiene la mayoría de los reactivos necesarios para la secuenciación, pre-divididos en alícuotas y listos para usar. Se pueden dar algunos problemas de secuenciación con el método de Sanger, como uniones no específicas del cebador al ADN, que afectan a la correcta interpretación de la secuencia de ADN. Además también puede afectar a la fidelidad de la secuencia obtenida estructuras secundarias internas de la cadena de ADN molde o ARN que pueda actuar de cebador al azar. Otros contaminantes que pueden afectar a la reacción son el ADN exógeno o inhibidores de la ADN polimerasa. Secuenciación por terminador fluorescente
Una alternativa al marcado del cebador es el marcado de los terminadores de la cadena, un método conocido como "secuenciación por terminador fluorescente". La mayor ventaja de este método es que la secuenciación se puede llevar a cabo en una sola reacción, en lugar de en cuatro reacciones como en el método del cebador marcado. En una secuenciación por terminador fluorescente se marcan cada uno de los cuatro didesoxinucleótidos que terminan la cadena con un colorante fluorescente diferente, con fluorescencias a diferentes longitudes de onda. Este método es atractivo por su gran capacidad y rapidez y actualmente es el método de referencia en la secuenciación automatizada con analizadores de secuencia controlados por computadora (ver más abajo). Entre sus limitaciones potenciales están los efectos de los terminadores fluorescentes en el fragmento de ADN, que produce alturas y formas de picos desiguales en los registros de secuencia de ADN del cromatograma tras la electroforesis capilar (ver ilustración de la derecha) Este problema se ha solventado en gran medida con la introducción de nuevos sistemas enzimáticos de polimerasas de ADN y colorantes que minimizan la variabilidad de la incorporación, así como métodos para eliminar los "pegotes de colorante" producidos por ciertas características químicas de los colorantes que pueden dar lugar a artefactos en los registros de secuencia de ADN. El método de secuenciado por terminador fluorescente junto con analizadores de secuencia de ADN de alto rendimiento se utiliza ahora para la inmensa mayoría de los proyectos de secuenciación, puesto que es más fácil de llevar a cabo y tiene un coste menor que los anteriores métodos de secuenciación. Automatización y preparación de las muestrasLos instrumentos modernos automáticos de secuenciación del ADN (secuenciadores de ADN) pueden secuenciar más de 384 muestras marcadas por fluoresciencia de una sola vez y llevar a cabo 24 ciclos de secuenciación al día. No obstante, los secuenciadores automáticos de ADN llevan a cabo solamente separación del ADN basada en el tamaño (por electroforesis capilar), detección y registro de la coloración fluorescente, y los datos resultantes se dan como cromatogramas que registran los picos de fluorescencia. Se efectúan por separado las reacciones de secuenciación mediante una termocicladora, lavado y resuspensión en una solución tamponada antes de pasar las muestras al secuenciador. En el pasado los operadores tenían que arreglar los extremos terminales de baja calidad (ver imagen de la derecha) de cada secuencia manualmente para eliminar los errores de secuenciación. Sin embargo, hoy se puede realizar mediante software como "Fast Chromatogram Viewer" el arreglo automático de los extremos terminales en grandes cantidades.[13] Estrategias de secuenciación a gran escalaLos procecimientos actuales solo pueden secuenciar directamente fragmentos relativamente cortos (de entre 300-1000 nucleótidos de longitud) en una sola reacción.[14] El principal obstáculo para secuenciar fragmentos de ADN de una longitud superior a este límite es la capacidad insuficiente de separación para resolver grandes framentos de ADN cuyo tamaño difiere en un sólo nucleótido. En cambio, las limitaciones impuestas por la incorporación de ddNTPs fueron resueltas en gran medida por Tabor, de la Hardvard Medical, Carl Fueller, de USB biochemicals, y colaboradores.[15] . La secuenciación a gran escala persigue la secuenciación de fragmentos muy grandes de ADN. Incluso los genomas bacterianos relativamente pequeños constan de miles de nucleótidos y sólo el Cromosoma 1 humano consta de 246 millones de bases. Así pues, algunos enfoques abordan el problema cortando (con enzimas de restricción) o cizallando (mediante fuerzas mecánicas) fragmentos grandes para obtener otros más pequeños. El ADN fragmentado se clona en un Vector de ADN, normalmente un cromosoma artificial bacteriano (BAC) y amplificado en Escherichia coli. El ADN amplificado se puede purificar entonces a partir de las células bacterianas (Una desventaja de los clones bacterianos para el secuenciado es que algunas secuencias de ADN pueden ser inherentemente inclonables en todas las líneas bacterianas disponibles debido al efecto deletéreo de la secuencia clonada en la bacteria hospedadora u otros efectos). Estos fragmentos cortos de ADN purificados a partir de colonias bacterianas individuales se secuencian completamente y se ensamblan electrónicamente en una secuencia larga y contigua identificando las secuencias que se solapan entre ellas (por secuenciación por fuerza bruta o "shotgun"). Este método no requiere información preexistente sobre la secuencia de ADN y a menudo se la conoce como secuenciación de novo. Los intervalos entre las secuencias ensambladas se pueden rellenar mediante paseos de cebadores, a menudo mediante pasos de sub-clonado (o secuenciación a base de transposones dependiendo del tamaño del resto de región que quede por secuenciar). Todas estas estrategias implican efectuar muchas lecturas menores del ADN por alguno de los métodos anteriores y posteriormente ensamblarlos en secuencias contiguas. Las diferentes estrategias tienen diferentes inconvenientes en cuanto a velocidad y exactitud. El método de secuenciación por fuerza bruta es el más práctico para secuenciar genomas grandes, pero su proceso de ensamblaje es complejo y potencialmente proclive al error -en particular en presencia de repetición de secuencias. Debido a esto, el ensamblaje del genoma humano no está literalmente completo — las secuencias repetitivas de los centrómeros, telómeros y otras partes del cromosoma quedan como huecos en el ensamblaje del genoma. A pesar de contar con solo el 93% del genoma ensamblado, el Proyecto Genoma Humano se declaró completado porque la definición de secuencia del genoma humano se limitó a la secuencia eucromática (completa al 99% en aquel momento), para excluir esas regiones repetitivas intratables.[16]
El genoma humano tiene una longitud de unos 3000 millones de pares de bases;[17] si la longitud media de cada fragmento es de 500 bases, llevaría un mínimo de seis millones de fragmentos secuenciar el genoma humano (sin tener en cuenta el solapamiento, es decir si fuera posible hacerlo de una sola vez). Mantener el control de un número tan elevado de secuencias presenta desafíos significativos que solo se pueden abordar mediante el desarrollo y la coordinación de varios algoritmos de procedimiento y computación, tales como el desarrollo y mantenimiento eficientes de bases de datos. Se utiliza la Resecuenciación o secuenciación marcada para determinar un cambio en la secuencia de ADN a partir de la secuencia "de referencia". A menudo se efectúa utilizando la PCR para amplificar la región de interés (se necesita una secuencia de ADN preexistente para diseñar los cebadores de ADN). La resecuenciación realiza tres pasos, la extracción del ADN o ARN del tejido biológico, la amplificación del ARN o ADN (habitualmente por PCR) y después la secuenciación. La secuencia resultante se compara con la de referencia o con una muestra normal para detectar mutaciones. Nuevos métodos de secuenciaciónSecuenciación de alto rendimientoLa elevada demanda de secuenciación de bajo coste ha dado lugar a las distintas tecnologías de secuenciación de alto rendimiento.[18] [19] Estos esfuerzos han sido financiados por instituciones públicas y privadas así como desarrolladas y comercializadas dentro de la empresa privada por las compañías de biotecnología. Se pretende que las tecnologías de secuenciación de alto rendimiento disminuyan los costes de secuenciación de las bibliotecas de ADN más alla de lo que se puede hacer con el método corriente del terminador marcado basado en la separación del ADN por electroforesis capilar. Muyos de los nuevos métodos de alto rendimiento usan métodos que paralelizan el proceso de secuenciación, produciendo miles o millones de secuencias a la vez.
Ya que los métodos de detección melecular frecuentemente no son lo suficientemente sensibles para la secuenciación de una sola molécula, la mayoría de los métodos utilizan un paso con clonación in vitro para generar muchas copias de cada molécula individual. Uno de los métodos es la PCR de emulsión, en la que se aislan las moléculas individuales de ADN junto con microesferas recubiertas con cebadores en burbujas acuosas dentro de una fase oleosa. Posteriormente una PCR recubre cada microesfera con copias clonales de la bliblioteca de moléculas aisadas y seguidamente se inmovilizan para ser más tarde secuenciadas. La PCR de emulsión se usa en los métodos publicados por Margulis y colaboradores (comercializado por 454 Life Sciences, adquirido por Roche), Shendure y Porreca et al. (conocido como "secuenciación polony ", —término formado por polimerasa "pol" y colonia "colony"), y la secuenciación SOLiD (desarrollada por Agencourt y adquirida por Applied Biosystems).[20] [21] [22] Otro método para la amplificación clonal in vitro es la "PCR de puente", en la que los fragmentos se amplifican a partir de los cebadores unidos a una superficie sólida, desarrollados y usados por Solexa (de la que ahora es propietaria la empresa Illumina). Estos métodos producen ambos muchas localizaciones físicamente aisladas que contienen cada una muchas copias de un solo fragmento. El método con una única molécula desarrolado por el laboratorio de Stephen Quake (y más tarde comercializado por Helicos) se salta este paso de amplificación, fijando directamente las moléculas de ADN a una superficie.[23]
Una vez que las secuencias clonales de ADN se localizan físicamente en posiciones separadas de la superficie, se pueden utilizar varios métodos de secuenciación para determinar las secuencias de ADN de todas las localizaciones en paralelo. La "secuenciación por síntesis", como en la popular secuenciación electroforética con terminador marcado con colorante, usa el proceso de síntesis de ADN por ADN polimerasa para identificar las bases presentes en la molécula complementaria de ADN. Los métodos de terminador reversible (used by Illumina and Helicos) utilizan versiones reversibles de terminadores marcados con colorante, añadiendo un nucleótido cada vez, y detectando la fluorescencia correspondiente a esa posición y removiendo posteriormente el grupo de bloqueo para permitir la polimerización de otro nucleótido. La Pirosecuenciación (utilizada por 454) también usa la polimerización del ADN para añadir nucleótidos, añadiendo cada vez un tipo diferente y despues detectando y cuantificando el número de nucleótidos añadidos a una determinada localización a través de la luz emitida por la liberación de los pirofosfatos unidos a ellos.[20] [24] La "secuenciación por ligamiento" es otro método enzimático de secuenciación que emplea una ADN ligasa en lugar de una polimerasa para identificar la secuencia objetivo.[25] [21] [22] Se usa en el método polony y en la tecnología SOLiD que ofrece Applied Biosystems. Este método utiliza un reservorio de todos los oligonucleótidos posibles de una longitud dada, marcados de acuerdo con la posición secuenciada. Los oligonucleótidos se templan y ligan; el ligamiento preferente de las ADN ligasas por su secuencia específica produce una señal correspondiente a la secuencia complementaria en esa posición concreta. Otras tecnologías de secuenciaciónOtros métodos de secuenciación por ADN podían tener ventajas en términos de eficiencia o exactitud. Al igual que la secuenciación por terminador marcado por tinción, están limitadas a la secuenciación de fragmentos únicos aislados. La "secuenciación por hibridación" es un método no enzimático que usa un chip de ADN. En este método, un único reservorio de ADN se marca mediante fluorescencia y se hibrida con un colección de secuencias conocidas. Si el ADN desconocido se hibrida fuertemente en un punto dado de entre las secuencias, haciéndole que "luzca", entonces se infiere que esa secuencia existe dentro de los ADN desconocidos que son secuenciados.[26] La Espectrometría de masas también se puede usar para secuenciar las moléculas de ADN; las reacciones convencionales de terminación de la cadena producen moléculas de ADN de diferentes longitudes y la longitud de esos fragmentos se determina entonces por las diferencias de masa entre ellas (en lugar de utilizar una separación por gel).[27] Hay nuevas propuestas para la secuenciación de ADN que están en desarrollo, pero aún no han sido probadas. Entre estas están el marcaje de la ADN polimerasa,[28] la lectura de la secuencia a medida que la cadena de ADN pasa por nanoporos (secuenciación por nanoporos),[29] y técnicas basades en microscopías, como la microscopía de fuerza atómica o el microscopio electrónico que se usan para identificar las posiciones de los nucleótidos individuales dentro de largos fragmentos de ADN marcando los nucleótidos con elementos pesados (p.ej. halógenos) para la detección visual y su registro.[30] En octubre de 2006 el NIH publicó un boletín de noticias describiendo las nuevas técnicas de secuenciación y anunciando varias concesiones de becas.[31] En Octubre de 2006, la Fundación Premio X establecío el Premio Arconte X (Archon X Prize), que premia con 10 millones de dólares al "primer equipo que pueda construir un dispositivo y utilizarlo para secuenciar 100 genomas humanos en 10 días o menos, con una exactud no menor a un error por cada 100.000 bases secuenciadas, con secuencias que cubran correctamente al menos el 98% del genoma, y a un coste no mayor de 10.000 $ por genoma."[32] Principales hitos en la secuenciación del ADN
Referencias
Véase tambiénEnlaces externos
Categoría: Genómica |
|
Este articulo se basa en el articulo Secuenciación_de_ADN publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores. |