El sistema inmunológico está formado por un conjunto de mecanismos que protegen al organismo de infecciones por medio de la identificación y eliminación de agentes patógenos. Debido a que los patógenos abarcan desde virus hasta gusanos parásitos intestinales, esta tarea es extremadamente compleja y las amenazas deben ser detectadas con absoluta especificidad distinguiendo los patógenos de las células y tejidos normales del organismo. A ello hay que sumar la capacidad evolutiva de los patógenos que les permite crear formas de evitar la detección por el sistema inmunológico e infectar al organismo hospedador. Para protegerse, los organismos vivos han desarrollado varios mecanismos para reconocer y neutralizar patógenos. Incluso los microorganismos simples —como las bacterias— poseen un sistema de enzimas que las protegen contra infecciones virales. Otros mecanismos inmunológicos básicos evolucionaron en las antiguas células eucariotas y permanecen hoy en sus descendientes modernos: plantas, peces, reptiles e insectos. Estos mecanismos incluyen péptidos antimicrobianos llamados defensinas, el proceso de fagocitosis y el sistema del complemento. Sin embargo, los mecanismos más sofisticados se desarrollaron más recientemente de forma conjunta con la evolución de los vertebrados[1] . El sistema inmunológico de los vertebrados —como el de los seres humanos— comprende varios tipos de proteínas, células, órganos y tejidos, que interactúan en una red elaborada y dinámica. Esta respuesta inmune más compleja que se manifiesta en los vertebrados incluye la capacidad de adaptarse para así reconocer patógenos concretos en forma más eficiente. El proceso de adaptación crea memorias inmunológicas y permite brindar una protección más efectiva durante futuros encuentros con estos patógenos. Este proceso de inmunidad adquirida es la base de la vacunación. Los desórdenes en el sistema inmunológico pueden causar enfermedades. Las enfermedades relacionadas con la inmunodeficiencia ocurren cuando el sistema inmunológico es menos activo de lo normal, dando lugar a infecciones que pueden poner en peligro la vida. La inmunodeficiencia puede ser el resultado de el diestrés crónico, de una enfermedad genética, como la "inmunodeficiencia severa combinada", o ser producida por fármacos o una infección, como el síndrome de inmunodeficiencia adquirida (sida), causado por el virus de inmunodeficiencia humana (VIH). En contraposición, las enfermedades autoinmunes son producidas por un sistema inmunológico hiperactivo que ataca tejidos normales como si fueran organismos extraños. Las enfermedades autoinmunes incluyen artritis reumatoide, diabetes mellitus tipo 1 y Lupus eritematoso. El sistema inmunológico es objeto de intensos estudios científicos debido al papel crítico que desempeña en la salud humana. Conocimientos adicionales recomendados
Líneas inmunológicas de defensaEl sistema inmunológico protege al organismo de infecciones mediante una estrategia de capas o barreras de defensa sucesivas, cada una más específica que la anterior. El primer nivel lo forman las barreras físicas que evitan que los agentes patógenos como las bacterias y los virus penetren en el organismo. Si un agente patógeno traspasa estas primeras barreras, el sistema inmunológico innato provee una respuesta inmediata, pero no específica. Los sistemas inmunológicos innatos se encuentran en todas las plantas y animales[2] . Sin embargo, si los agentes patógenos evaden la respuesta innata, los vertebrados poseen una tercera capa de protección, que es el sistema inmunológico adaptativo. Aquí el sistema inmunológico adapta su respuesta durante la infección para mejorar el reconocimiento del agente patógeno. La información sobre esta respuesta mejorada se conserva aún después de que el agente patógeno es eliminado, bajo la forma de memoria inmunológica, y permite que el sistema inmune adaptativo desencadene ataques más rápidos y más fuertes si en el futuro el sistema inmune detecta este tipo de patógeno[3] .
Tanto la inmunidad innata como la adaptativa dependen de la habilidad del sistema inmunológico para distinguir entre las moléculas propias y las que no lo son. En inmunología, las moléculas propias son aquellos componentes de un organismo que el sistema inmunológico distingue de las substancias extrañas.[4] Al contrario, las moléculas que no son parte del organismo, son reconocidas como moléculas extrañas. Un tipo de moléculas extrañas son los llamados antígenos (que significa "anti" cuerpo "gen" eradores), son substancias que se enlazan a receptores inmunes específicos y desencadenan una respuesta inmune.[5] . Barreras superficialesEstas barreras superficiales pertenecen al sistema inmunológico innato pues no dan una respuesta específica contra determinado tipo de organismos patogenos o toxinas. Son defensas que en ocasiones resultan de procesos generales del organismo pero que tienen una importancia capital para el organismo pues eliminan una gran cantidad de infecciones contribuyendo de esta manera a aligerar la carga de las defensas adquiridas. Existe un gran número de tipos de barreras que protegen de infecciones, incluyendo barreras mecánicas, químicas y biológicas. La cutícula cerosa de una hoja, el exoesqueleto de un insecto, la cáscara de un huevo, y la piel son ejemplos de barreras mecánicas que forman la primera línea de defensa contra infecciones[5] . Sin embargo, como los organismos no están completamente sellados frente al medio externo, otros sistemas actúan para proteger las aberturas del cuerpo como los pulmones, el intestino y el tracto genitourinario. En los pulmones, la tos y los estornudos expulsan mecánicamente a los elementos patógenos y otros organismos del tracto respiratorio. El flujo de las lágrimas y la orina, realiza también una acción de limpieza al producir el arrastre mecánico de elementos patógenos, mientras que la mucosidad secretada por el sistema respiratorio y el tracto gastrointestinal sirve para atrapar microorganismos.[6] Las barreras químicas también protegen contra infecciones. La piel y el tracto respiratorio secretan péptidos antimicrobianos tales como las defensinas-β.[7] Enzimas tales como la lisozima y la fosfolipasa A en la saliva, las lágrimas y la leche materna también son agentes antibacterianos.[8] [9] Las secreciones de la vagina sirven como barreras químicas en la menarquia, cuando se vuelven ligeramente ácidas, mientras que el semen contiene defensinas y zinc para matar patógenos.[10] [11] En el estómago, el ácido gástrico y las peptidasas actúan como poderosas defensas químicas frente a patógenos ingeridos. Dentro de los tractos genitourinario y gastrointestinal, la microbiota comensal sirve como barrera biológica porque compite con las bacterias patógenas por alimento y espacio, y en algunos casos modificando las condiciones del medio, como el pH o el contenido de hierro disponible.[12] Esto reduce la probabilidad de que la población de patógenos alcance el número suficiente de individuos como para causar enfermedades. Sin embargo, dado que la mayoría de los antibióticos no discriminan entre bacterias patógenas y la flora normal, los antibióticos orales pueden a veces producir un crecimiento excesivo de hongos (los hongos no son afectados por la mayoría de los antibióticos) y originar procesos como la candidiasis vaginal (provocada por una levadura).[13] La reintroducción de flora probiótica, como el lactobacillus, encontrado en el yogur, ayuda a restaurar un equilibrio saludable de las poblaciones microbianas en casos de infecciones intestinales.[14] Inmunidad innataLos gérmenes que logren penetrar en un organismo se encontrarán con las células y los mecanismos del sistema inmune innato. Las defensas del sistema inmune innato no son específicas, lo cual significa que estos sistemas reconocen y responden a los patógenos en una forma genérica[5] . Este sistema no confiere una inmunidad duradera contra el patógeno. El sistema inmune innato es el sistema dominante de protección en la gran mayoría de los organismos[2] . Barreras humorales y químicasInflamaciónLa inflamación es una de las primeras respuestas del sistema inmune a una infección.[15] Los síntomas de la inflamación son el enrojecimiento y la hinchazón, que son causadas por el incremento del flujo de sangre en un tejido. La inflamación es producida por eicosanoides y citocinas, que son liberadas por células heridas o infectadas. Los eicosanoides incluyen prostaglandinas que producen fiebre y dilatación de los vasos sanguíneos asociados con la inflamación, y leucotrienos que atraen ciertos leucocitos[16] [17] Las citocinas incluyen interleucinas que son responsables de la comunicación entre los leucocitos; quimiocinas que promueven la quimiotaxis; y los interferones que tienen efectos anti-virales como la supresión de la síntesis de proteínas en la célula huésped.[18] También pueden liberarse factores de crecimiento y factores citotóxicos. Estas citocinas y otros agentes químicos atraen células inmunitarias al lugar de la infección y promueven la curación del tejido dañado mediante la remoción de los patógenos.[19] Sistema del complementoEl sistema del complemento es una cascada bioquímica que ataca las superficie de las células extrañas. Contiene más de 20 proteínas diferentes y recibe ese nombre por su capacidad para complementar la destrucción de patógenos iniciada por los anticuerpos. El sistema del complemento es el mayor componente humoral de la respuesta inmune innata[20] [21] . Muchas especies tienen sistemas de complemento, el mismo no sólo se presenta en los mamíferos, sino que las plantas, peces y algunos invertebrados también lo poseen[22] . En los seres humanos, esta respuesta es activada por la unión de proteínas del complemento a carbohidratos de las superficies de los microorganismos o por la unión del complemento a anticuerpos que a su vez se han unido a los microorganismos. Esta señal de reconocimiento produce una rápida respuesta de destrucción.[23] La velocidad de la respuesta es el resultado de la amplificación de la señal que ocurre tras la activación proteolítica secuencial de las moléculas del complemento, que también son proteasas. Tras la unión inicial de proteínas del complemento al microbio, aquéllas activan su capacidad proteásica, que a su vez activa a otras proteasas del complemento y así sucesivamente. Esto produce una cascada catalítica que amplifica la señal inicial por medio de una retroalimentación positiva controlada. .[24] La cascada origina la producción de péptidos que atraen células inmunitarias, aumentan la permeabilidad vascular y opsonizan (recubren) la superficie del patógeno, marcándolo para su destrucción. Esta deposición del complemento puede también matar células directamente al bloquear su membrana plasmática[20] . Barreras celulares del sistema innato
Los leucocitos (células blancas de la sangre) actúan como organismos unicelulares independientes y son el segundo brazo del sistema inmune innato[5] . Los leucocitos innatos incluyen fagocitos (macrófagos, neutrófilos y células dendríticas), mastocitos, eosinófilos, basófilos y células asesinas naturales. Estas células identifican y eliminan patógenos, bien sea atacando a los más grandes a través del contacto o englobando a otros para así matarlos[22] . Las células innatas también son importantes mediadores en la activación del sistema inmune adaptativo[3] . La Fagocitosis es una característica importante de la inmunidad innata celular, llevada a cabo por células llamadas fagocitos, que engloban o comen, patógenos y partículas rodeándolos exteriormente con su membrana hasta hacerlos pasar al interior de su citoplasma. Los fagocitos generalmente patrullan en búsqueda de patógenos, pero pueden ser atraídos a ubicaciones específicas por las citocinas[5] Al ser englobado por el fagocito, el patógeno resulta envuelto en una vesícula intracelular llamada fagosoma que a continuación se fusiona con otra vesícula llamada lisosoma para formar un fagolisosoma. El patógeno es destruido por la actividad de las enzimas digestivas del lisosoma o a consecuencia del llamado "chorro respiratorio" que libera radicales libres de oxígeno en el fagolisosoma.[25] [26] La fagocitosis evolucionó como un medio de adquirir nutrientes, pero este papel se extendió en los fagocitos para incluir el englobamiento de patógenos como mecanismo de defensa[27] La fagocitosis probablemente representa la forma más antigua de defensa del huésped, pues ha sido identificada en animales vertebrados e invertebrados[28] Los neutrófilos y macrófagos son fagocitos que viajan a través del cuerpo en busca de patógenos invasores.[29] Los neutrófilos son encontrados normalmente en la sangre y es el tipo más común de fagocitos, que normalmente representan el 50 o 60% del total de leucocitos que circulan en el cuerpo.[30] Durante la fase aguda de la inflamación, particularmente en el caso de las infecciones bacterianas, los neutrófilos migran hacia el lugar de la inflamación en un proceso llamado quimiotaxis, y son las primeras células en llegar a la escena de la infección. Los macrófagos son células versátiles que residen dentro de los tejidos y producen una amplia gama de sustancias como enzimas, proteínas del complemento, y factores reguladores como la Interleucina 1[31] . Los macrófagos también actúan como carroñeros, librando al organismo de células muertas y otros residuos, y como "células presentadoras de antígenos" para activar el sistema inmune adaptativo[3] . Las células dendríticas son fagocitos en los tejidos que están en contacto con el ambiente externo; por lo tanto están localizados principalmente en la piel, la nariz, los pulmones, el estómago y los intestinos.[32] . Se llaman así por su semejanza con las dendritas neuronales, pues ambas tienen muchas proyecciones espiculares en su superficie, pero las células dendríticas no están relacionadas en modo alguno con el sistema nervioso. Las células dendríticas actúan como enlace entre los sistemas inmunes innato y adaptativo, pues presentan antígenos a las células T, uno de los tipos de célula clave del sistema inmune adaptativo[32] . Los mastocitos residen en los tejidos conectivos y en las membranas mucosas, y regulan la respuesta inflamatoria.[33] Se encuentran asociadas muy a menudo con la alergia y la anafilaxia.[30] Los basófilos y los eosinófilos están relacionados con los neutrófilos. Secretan mediadores químicos que están involucrados en la defensa contra parásitos y desempeñan un papel en las reacciones alérgicas, como el asma[34] Las células asesinas naturales (NK, del inglés Natural Killer) son leucocitos que atacan y destruyen células tumorales, o células que han sido infectadas por virus.[35] Inmunidad adaptativaEl sistema inmune adaptativo evolucionó en los vertebrados primitivos y permite una respuesta inmunitaria mayor, así como el establecimiento de la denominada memoria inmunológica, donde cada patógeno es recordado por un antígeno característico y propio de ese patógeno en particular.[36] La respuesta inmune adaptativa es específica de los antígenos y requiere el reconocimiento de antígenos que no son propios durante un proceso llamado presentación de los antígenos. La especificidad del antígeno permite la generación de respuestas que se adaptan a patógenos específicos o a las células infectadas por patógenos. La habilidad de montar estas respuestas específicas se mantiene en el organismo gracias a las células de memoria. Si un patógeno infecta a un organismo más de una vez, estas células de memoria desencadenan una respuesta específica para ese patógeno que han reconocido, con el fin de eliminarlo rápidamente. LinfocitosLas células del sistema inmune adaptativo son una clase especial de leucocitos, llamados linfocitos. Las células B y las células T son las clases principales de linfocitos y derivan de células madre hematopoyéticas pluripotenciales de la médula ósea[22] . Las células B están involucradas en la respuesta inmune humoral, mientras que las células T lo están en la respuesta inmunitaria mediada por células. Las células B y T contienen moléculas receptoras que reconocen objetivos o blancos específicos. Las células T reconocen un objetivo no-propio, como un patógeno, sólo después de que los antígenos (pequeños fragmentos del patógeno) han sido procesados y presentados en combinación con un receptor propio, una molécula del llamado complejo mayor de histocompatibilidad (CMH). Hay dos subtipos principales de células T: la célula T asesina y la célula T colaboradora o ayudante. Las células T asesinas solo reconocen antígenos acoplados a moléculas del CMH de clase I, mientras que las células T colaboradoras sólo reconocen antígenos acoplados a moléculas del CMH de clase II. Estos dos mecanismos de presentación de antígenos reflejan los diferentes cometidos de los dos tipos de células T. Un tercer subtipo menor lo forman las células T γ δ (células T gamma/delta), que reconocen antígenos intactos que no están acoplados a receptores CMH.[37] Por el contrario, el receptor específico de antígeno de las células B es un molécula de anticuerpo en la superficie de la célula B, y reconoce patógenos completos sin la necesidad de que los antígenos sean procesados previamente. Cada linaje de células B expresa en su superficie un anticuerpo diferente, de forma que el conjunto completo de receptores de antígenos de las células B de un organismo, representa todos los anticuerpos que ese organismo es capaz de fabricar[22] . Células T asesinas
Las células T asesinas son un subgrupo de células T que matan células infectadas con virus (y otros patógenos), o que estén dañadas o enfermas por otras causas.[39] Al igual que las células B, cada tipo de célula T reconoce un antígeno diferente. Las células T asesinas son activadas cuando su receptor de células T (RCT) se liga a su antígeno específico en un complejo con el receptor del CMH de clase I de otra célula. El reconocimiento de este complejo CMH-antígeno se ve favorecido por un co-receptor en la célula T, llamado CD8. Así, la célula T viaja a través del organismo en busca de células donde los receptores del CMH de clase I lleven este antígeno. Cuando una célula T activada toma contacto con tales células, libera citotoxinas que forman poros en la membrana plasmática de la célula diana o receptora, permitiendo que iones, agua y toxinas entren en ella. Esto provoca el estallido de la célula diana o que experimente apoptosis[40] . La muerte de células huésped inducida por las células T asesinas tiene una gran importancia para evitar la replicación de los virus. La activación de las células T tiene unos controles muy estrictos y por lo general requiere una señal muy fuerte de activación por parte del complejo CMH/antígeno, o señales de activación adicionales proporcionadas por las células T colaboradoras (ver más abajo)[40] . Células T colaboradorasLas células T colaboradoras o ayudantes regulan tanto las respuestas inmunes innatas como las adaptativas y ayudan a determinar qué tipo de respuesta presentará el organismo ante un patógeno concreto.[41] [42] Estas células no tienen actividad citotóxica y no matan células infectadas o patógenos directamente. En cambio controlan la respuesta inmune dirigiendo a otras células para que realicen estas tareas. Las células T colaboradoras expresan receptores de células T que reconocen antígenos ligados a moléculas del CMH de clase II. En las células T colaboradoras el complejo CMH:antígeno también es reconocido por el co-receptor CD4, que moviliza moléculas dentro de la célula T (e.g. la enzima Lck, una tirosin kinasa específica de leucocitos), las cuales son responsables de la activación de células T. Las células T colaboradoras tienen una asociación más débil con el complejo CMH:antígeno que el que se observa en las células T asesinas, lo que quiere decir que es necesario que se liguen muchos receptores (alrededor de 200 a 300) en la célula T ayudante a complejos CMH:antígeno para poder activar las células ayudantes, mientras que las células T asesinas pueden ser activadas por la unión a una sola molécula CMH:antígeno. La activación de las células T colaboradoras requiere también un tiempo más prolongado de acoplamiento con la célula presentadora de antígeno.[43] La activación de una célula T colaboradora hace que ésta libere citoquinas que influyen sobre la actividad de muchos tipos de células. Las señales de las citoquinas liberadas por las células T colaboradoras refuerzan la función microbicida de los macrofagos y la actividad de las células T asesinas[5] . Además, la activación de las células T colaboradoras provoca una sobre-regulación de las moléculas expresadas en la superficie de las células T, como el ligando CD40 (también llamado CD154), que proporcionan señales extra de estimulación requeridas para activar a los linfocitos B productores de anticuerpos.[44] Células T γδLas células T γδ representan una pequeña subpoblación de células T caracterizada por poseer en su superficie un receptor de célula T (RCT) diferente. La mayoría de las células T tienen un RCT compuesto de dos cadenas de glucoproteínas denominadas cadenas α y β; sin embargo en las células T γδ su receptor está formado por dos cadenas denominadas γ y δ. Este grupo de células T es, en general, menos numeroso que el de las αβ y es en la mucosa del intestino donde se las encuentra en mayor número, formando parte de una población de linfocitos denominada "linfocitos intraepiteliales". Se desconoce en gran medida cuáles son las moléculas antigénicas que estimulan a las células T γδ, sin embargo, estas células son peculiares en el sentido de que parece que no necesitan que los antígenos sean procesados y presentados unidos a moléculas del CMH, aunque algunas reconocen a moléculas del CMH de clase IB. Por otra parte, se cree que las células T γδ desempeñan un papel principal en el reconocimiento de antígenos de naturaleza lipídica. Las células T γδ comparten las características de las células T colaboradoras, las citotóxicas y las asesinas naturales. Al igual que otras subpoblaciones de células T no convencionales que portan RCTs invariables o constantes, como algunos subtipos de células T asesinas naturales, las γδ se encuentran en la frontera entre la inmunidad innata y la adaptativa.[45] Por una parte las células γδ forman parte de la inmunidad adaptativa porque son capaces de reorganizar los genes de sus RCTs para producir una diversidad de receptores y desarrollar una memoria fenotípica, es decir, ser portadoras de receptores adaptados a antígenos o patógenos concretos. Por otra parte también forman parte del sistema inmunitario innato ya que las diferentes subpoblaciones también poseen receptores capaces de actuar como receptores de reconocimiento de patrones. Así, por ejemplo, un gran número de células T Vγ9/Vδ2 humanas (un subtipo de células T γδ) responden o se activan en unas horas frente a moléculas comunes no peptídicas producidas por microorganismos, mientras que otro subtipo de células T, las Vδ1 en los epitelios, responden ante células epiteliales que porten indicadores de que han sufrido algún tipo de estrés.[46]
Anticuerpos y linfocitos BEl linfocito B identifica los patógenos cuando los anticuerpos de su superficie se unen a antígenos foráneos específicos[47] . Este complejo antígeno/anticuerpo pasa al interior del linfocito B donde es procesado por proteolisis y descompuesto en péptidos. El linfocito B muestra entonces estos antígenos peptídicos en su superficie unidos a moléculas del CMH de clase II. Esta combinación de CMH/antígeno atrae a un linfocito T colaborador que tenga receptores complementarios de ese complejo CMH/antígeno. La célula T libera entonces linfoquinas (el tipo de citoquinas producido por los linfocitos) y activa así al linfocito B.[48] Cuando el linfocito B ha sido activado comienza a dividirse y su descendencia segrega millones de copias del anticuerpo que reconoce a ese antígeno. Estos anticuerpos circulan en el plasma sanguíneo y en la linfa, se ligan a los patógenos que portan esos antígenos, dejándolos marcados para su destrucción por la activación del complemento o al ser ingeridos por los fagocitos. Los anticuerpos también pueden neutralizar ciertas amenazas directamente, ligándose a toxinas bacterianas o interfiriendo con los receptores que virus y bacterias emplean para infectar las células[49] . Sistema inmune adaptativo alternativoAunque las moléculas clásicas del sistema inmune adaptativo (por ejemplo, anticuerpos y receptores de células T) existen solamente en los vertebrados mandibulados, se ha descubierto una molécula diferente, y derivada de linfocitos, en vertebrados primitivos sin mandíbula, como la lamprea y animales marinos de la familia myxinoidea. Estos animales poseen una gran variedad de moléculas llamadas receptores linfocíticos variables (RLVs) que, como los receptores de antígenos de los vertebrados con mandíbula, son producidos por un número pequeño de genes (uno o dos). Se cree que estas moléculas se ligan a antígenos de los patógenos de un modo similar a como lo hacen los anticuerpos y con el mismo grado de especificidad.[50] Memoria inmunológicaCuando las células B y T son activadas y comienzan a replicarse, algunos de sus descendientes se convertirán en células de memoria con un largo periodo de vida. A lo largo de la vida de un animal, estas células recordarán cada patógeno específico que se hayan encontrado y pueden desencadenar una fuerte respuesta si detectan de nuevo a ese patógeno concreto. Esto es "adaptativo" porque ocurre durante el tiempo de vida de un individuo como una adaptación a una infección por ese patógeno y prepara al sistema inmunitario para futuros desafíos. La memoria inmunológica puede ser pasiva y de corta duración o activa y de larga duración. Inmunidad pasivaLa inmunidad pasiva es generalmente de corta duración, desde unos pocos días a algunos meses. Los recién nacidos no han tenido una exposición previa a los microbios y son particularmente vulnerables a las infecciones. La madre les proporciona varias capas de protección pasiva. Durante el embarazo, un tipo particular de anticuerpo, llamado IgG, es transportado de la madre al bebé directamente a través de la placenta, así los bebés humanos tienen altos niveles de anticuerpos ya desde el nacimiento y con el mismo rango de especificidad contra antígenos que su madre.[51] La leche materna también contiene anticuerpos que al llegar al intestino del bebé le protegen de infecciones hasta que éste pueda sintetizar sus propios anticuerpos.[52] Todo esto es una forma de inmunidad pasiva porque el feto, en realidad, no fabrica células de memoria ni anticuerpos, sólo los toma prestados de la madre. En medicina, la inmunidad protectora pasiva puede ser también transferida artificialmente de un individuo a otro a través de suero rico en anticuerpos.[53] Inmunidad activa e inmunizaciónLa memoria activa de larga duración es adquirida después de la infección, por la activación de las células T y B. La inmunidad activa puede ser también generada artificialmente, a través de la vacunación. El principio en que se basa la vacunación (también llamada inmunización) consiste en introducir un antígeno de un patógeno para estimular al sistema inmunológico y desarrollar inmunidad específica contra ese patógeno particular sin causar la enfermedad asociada con ese microorganismo[5] . Esta deliberada inducción de una respuesta inmune es efectiva porque explota la especificidad natural del sistema inmunológico, así como su inducibilidad. Siendo la enfermedad infecciosa una de las causas más frecuentes de muerte en la población humana, la vacunación representa la manipulación más eficaz del sistema inmunológico que ha desarrollado la humanidad[54] [22] . Casi todas las vacunas virales están basadas en virus vivos atenuados, mientras que las vacunas bacterianas están basadas en componentes o fragmentos no celulares de bacterias, incluyendo componentes inofensivos de toxinas[5] . Dado que muchas vacunas derivadas de antígenos acelulares no inducen una respuesta adaptativa lo suficientemente fuerte, a la mayoría de vacunas bacterianas se les añaden coadyuvantes que activan las células del sistema inmune innato presentadoras de antígenos para potenciar la inmunogenicidad.[55] Desórdenes en la inmunidad humanaEl sistema inmunológico es un complejo notablemente eficaz que incorpora especificidad, inducibilidad y adaptación. No obstante, a veces se producen fallos que pueden agruparse, de forma genérica, dentro de las tres siguientes categorías: inmunodeficiencia, autoinmunidad e hipersensibilidad. InmunodeficienciasLa Inmunodeficiencia ocurre cuando uno o más de los componentes del sistema inmunológico están inactivos. La habilidad del sistema inmunológico de responder a los patógenos se ve disminuida en los jóvenes y en los adultos mayores. En estos últimos las inmunorespuestas empiezan a decaer alrededor de los 50 años.[56] En países desarrollados, la obesidad, el alcoholismo y el abuso de drogas ilegales son causas comunes de una respuesta inmune disminuida.[56] Sin embargo, la malnutrición es la causa más común de la inmunodeficiencia en países en vías de desarrollo.[56] Las inmunodeficiencias también pueden ser heredadas o adquiridas[5] . La enfermedad granulomatosa crónica, en la cual los fagocitos tienen problemas para destruir patógenos, es un ejemplo de una herencia, o inmunodeficiencia congénita. El SIDA y algunos tipos de cáncer causan inmunodeficiencia adquirida.[57] [58] AutoinmunidadLas respuestas inmunes exageradas abarcan el otro extremo de la disfunción inmunitaria, particularmente el desorden autoinmune. Aquí el sistema inmunitario falla en distinguir adecuadamente lo propio de lo extraño y ataca a partes del propio organismo. En circustancias normales, muchas células T y anticuerpos reaccionan con péptidos del propio organismo[59] Existen, sin embargo, células especializadas (localizadas en el timo y en la médula ósea)que participan en la eliminación de linfocitos jóvenes que reaccionan contra antígenos propios, para prevenir así la autoinmunidad[47] . HipersensibilidadLa hipersensibilidad es una inmunorespuesta que daña los tejidos propios del cuerpo. Está dividida en cuatro clases (Tipos I-IV) basándose en los mecanismos involucrados y el tiempo de desarrollo de la reacción hipersensible. El tipo I de hipersensibilidad es una reacción inmediata o anafiláctica, relacionada con alergias. Los síntomas van desde un malestar suave hasta la muerte. El tipo I de hipersensibilidad está mediado por la inmunoglobulina E, que es liberada por mastocitos y basófilos[60] . El tipo II de hipersensibilidad se produce cuando los anticuerpos se ligan a antígenos localizados sobre las células propias del paciente, marcándolas para su destrucción. También recibe el nombre de hipersensibilidad dependiente de anticuerpos o citotóxica y es mediada por anticuerpos de tipo IgG e IgM[60] . Los inmunocomplejos (agregados de antígenos, proteínas del complemento, y anticuerpos IgG e IgM ) depositados en varios tejidos desencadenan la hipersensibilidad de tipo III[60] . La hipersensibilidad de tipo IV (también conocida como "hipersensibilidad de tipo retardado") generalmente tarda entre dos y tres días en desarrollarse. Las reacciones de tipo IV están implicadas en muchas enfermedades autoinmunes e infecciosas, pero también incluyen dermatitis de contacto. Estas reacciones son mediadas por las células T, monocitos y macrófagos[60] . Otros mecanismos de defensa del huéspedEs probable que el sistema inmunitario adaptativo y de múltiples componentes surgiera con los primeros vertebrados, ya que en los invertebrados no se producen linfocitos ni respuestas humorales basadas en anticuerpos[1] . Muchas especies, sin embargo, utilizan mecanismos que parecen ser los precursores de estas funciones de la inmunidad de los vertebrados. Los sistemas inmunitarios aparecen incluso en las formas de vida más simples, como las bacterias, que utilizan un único mecanismo de defensa llamado "sistema de restricción y modificación" para protegerse de patógenos víricos llamados bacteriófagos. .[61] Los receptores de reconocimiento de patrón son proteínas que emplean casi todos los organismos para identificar moléculas relacionadas con patógenos microbianos. Los péptidos antimicrobianos llamados defensinas constituyen un componente de la respuesta inmune innata que se ha conservado a lo largo de la evolución, está presente en todos los animales y plantas y representa la forma principal de inmunidad sistémica de los invertebrados[1] . El sistema del complemento y las células fagocitarias también se encuentran presentes en la mayoría de los invertebrados. Las ribonucleasas y la ruta de interferencia de ARN se conservan en todos los eucariotas y se piensa que desempeñan una función en la respuesta inmune ante los virus y otros materiales genéticos extraños.[62] A diferencia de los animales, las plantas no poseen células con capacidad fagocítica y la respuesta inmunitaria de la mayoría de las plantas comprende mensajeros químicos sistémicos que se distribuyen por toda la planta[63] . Cuando una parte de un vegetal resulta infectada, la planta genera una respuesta de hipersensibilidad localizada mediante la que las células del lugar de la infección sufren una rápida apoptosis para prevenir que la infección se extienda a otras partes de la planta. La resistencia sistémica adquirida (SAR) es un tipo de respuesta de las plantas que convierte a toda la planta en resistente a un agente infeccioso en particular.[63] . Los mecanismos de silenciamiento de ARN tienen una especial importancia en esta respuesta sistémica ya que pueden bloquear la replicación de virus. [64] Inmunología de tumoresOtro cometido importante del sistema inmunitario es el de identificar y eliminar células tumorales. Las células transformadas de los tumores expresan antígenos que no aparecen en células normales. El sistema inmunitario considera a estos antígenos como extraños, lo que ocasiona que las células inmunitarias ataquen a las células tumorales transformadas. Los antígenos expresados por los tumores pueden tener varios orígenes;[66] algunos derivan de virus oncógenos como el papilomavirus humano, que ocasiona cáncer de cuello uterino[67] mientras que otros son proteínas propias del organismos que se presentan en bajos niveles en células normales, pero que alcanzan altos niveles en células tumorales. Un ejemplo es una enzima llamada tirosinasa que, cuando se expresa en altos niveles, transforma a ciertas células de la piel (melanocitos) en tumores llamados melanomas.[68] [69] La principal respuesta del sistema inmunológico es destruir las células anormales por medio de células T asesinas, algunas veces con asistencia de células T ayudantes.[69] [70] Los antígenos tumorales son presentados unidos a moléculas del CMH de clase I, de forma similar a lo que ocurre con los antígenos víricos. Esto permite a las células T asesinas reconocer a las células tumorales como anormales.[71] Las células T asesinas naturales también matan células tumorales de una forma similar, especialmente si la célula tumoral tiene sobre su superficie menos moléculas del CMH de clase I de lo normal; algo que resulta habitual en los tumores.[72] A veces se generan anticuerpos contra las células tumorales, lo que permite que sean destruidas por el sistema del complemento.[66] [73] [74] No obstante, algunas células tumorales evaden la acción del sistema inmunitario y generan cánceres.[75] Un mecanismo empleado a veces por las células tumorales, para evadir su detección por parte de las células T asesinas, consiste en reducir el número de moléculas del CMH de clase I en su superficie.[71] Algunas células tumorales también liberan productos que inhiben la respuesta inmune, por ejemplo al secretar la citoquina TGF-β, la cual suprime la actividad de macrófagos y linfocitos.[76] Además, también puede desarrollarse tolerancia inmunológica frente a los antígenos tumorales, de forma que el sistema inmunitario deja de atacar a las células tumorales.[75] Regulación fisiológicaLas hormonas pueden modular la sensibilidad del sistema inmunológico. Por ejemplo, se sabe que las hormonas sexuales femeninas estimulan las reacciones tanto del sistema inmunológico adaptativo[77] como del innato.[78] Algunas enfermedades autoinmunes como el lupus eritematoso afectan con mayor frecuencia a las mujeres, y su comienzo coincide a menudo con la pubertad. Por el contrario, andrógenos como la testosterona parece que deprimen al sistema inmunológico.[79] Otras hormonas, como la prolactina y la hormona de crecimiento o vitaminas como la vitamina D, parece que también regulan las respuestas del sistema inmunitario.[80] [81] Se piensa que el descenso progresivo en los niveles de hormonas con la edad, pudiera ser parcialmente responsable del debilitamiento de las respuestas inmunes en individuos de edad avanzada.[82] A la inversa, algunas hormonas son reguladas por el sistema inmunitario, sobre todo la actividad de la hormona tiroidea[83] El sistema inmunológico se ve potenciado con el sueño y el descanso,[84] mientras que resulta perjudicado por el estrés.[85] Las dietas pueden afectar al sistema inmunológico; por ejemplo frutas frescas, vegetales y comida rica en ciertos ácidos grasos favorecen el mantenimiento de un sistema inmunológico saludable.[86] Asimismo, la desnutrición fetal puede causar una debilitación de por vida del sistema inmunitario.[87] En las medicinas tradicionales, se cree que algunas plantas pueden estimular el sistema inmunitario y ciertos estudios así lo han sugerido,[88] aunque su mecanismo de acción es complejo y difícil de caracterizar. Manipulación en la medicina
La respuesta inmunológica puede ser manipulada para suprimir respuestas no deseadas de la autoinmunidad, la alergia y el rechazo de trasplantes, así como para estimular respuestas protectoras contra patógenos que en gran medida eluden la acción del sistema inmunitario. Se emplean fármacos inmunosupresores para controlar los desordenes autoinmunes o la inflamación cuando produce grandes daños en los tejidos, o para prevenir el rechazo de un órgano trasplantado[22] [89] . Las drogas antiinflamatorias se emplean para controlar los efectos de la inflamación. Los corticosteroides son los más poderosos de estos medicamentos; sin embargo, tienen muchos efectos tóxicos colaterales y su uso debe ser controlado estrictamente.[90] Por ello, a menudo, se emplean dosis más bajas de antiinflamatorios junto con fármacos inmunosupresores y citotóxicos como el metotrexato o la azatioprina. Las drogas citotóxicas inhiben la inmunorespuesta destruyendo células que se están dividiendo, como las células T que han sido activadas. Sin embargo, la destrucción es indiscriminada, por lo que otros órganos y tipos de células resultan afectados, lo que ocasiona efectos colaterales[89] . Las drogas inmunodepresoras como la ciclosporina evitan que las células T respondan correctamente a las señales, inhibiendo rutas de transducción de señales.[91] Los fármacos de mayor peso molecular (> 500 Dalton) pueden provocar la neutralización de la respuesta inmune, particularmente si son suministrados repetidamente, o en dosis grandes. Esto limita la eficacia de drogas basadas en gandes péptidos y proteínas (que generalmente superan los 6000 Dalton). En algunos casos, la droga no es en sí misma inmunógena, pero puede ser coadministrada con un medicamento inmunógeno, como el Taxol. Se han desarrollado métodos computacionales para predecir la inmunogenicidad de péptidos y proteínas, que resultan particularmente útiles en el diseño de anticuerpos terapéuticos, la valoración de la probable virulencia de las mutaciones que afecten a partículas víricas de recubrimiento y la validación de nuevos fármacos basados en péptidos. Las primeras técnicas se basaban principalmente en el hecho observado de que los aminoácidos hidrófilos se encuentran presentes, en mayor cantidad que los aminoácidos hidrófobos, en los epítopos (determinantes antigénicos que producen una interacción específica reversible con una inmunoglobulina y consisten en un grupo de aminoácidos localizados sobre la superficie del antígeno);[92] sin embargo, más recientemente se han empleado técnicas de Aprendizaje Automático, que se sirven de bases de datos de epítopos conocidos, generalmente de proteínas víricas bien estudiadas.[93] Se ha creado una base de datos de acceso público para la catalogación de epítopos de patógenos que se sabe son reconocidos por células B.[94] Los estudios de inmunogenicidad basados en la bioinformática, constituyen un campo emergente que se conoce con el nombre de inmunoinformática.[95] Manipulación por los patógenosEl éxito de cualquier patógeno depende de su habilidad para eludir las respuestas inmunitarias del huésped. Por ello, los patógenos han desarrollado diferentes métodos que les permiten infectar con éxito al huésped, al mismo tiempo que evaden la destrucción producida por la inmunidad.[96] Las bacterias frecuentemente logran sobrepasar las barreras físicas al secretar enzimas que digieren la barrera – por ejemplo, utilizando un sistema de secreción de tipo II.[97] Alternativamente, al usar un sistema de secreción tipo III, pueden insertar un tubo hueco en la célula huésped que les provee de un conducto para trasladar proteínas del patógeno al huésped; las proteínas transportadas por el tubo son utilizadas frecuentemente para desarmar las defensas del huésped.[98] Una estrategia utilizada por varios patógenos para eludir al sistema inmune innato es la replicación intracelular (también llamada patogénesis intracelular). En ella, un patógeno pasa la mayor parte de su ciclo vital dentro de células huésped en donde se protege del contacto directo con células inmunitarias, anticuerpos y proteínas del complemento. Algunos ejemplos de patógenos intracelulares incluyen virus, bacterias del género Salmonella causantes de toxiinfecciones alimentarias y los parásitos eucariotas que causan la malaria (Plasmodium falciparum) y la leismaniosis (Leishmania spp.). Otras bacterias, como el Mycobacterium tuberculosis, viven dentro de una cápsula protectora que evita su lisis por el complemento.[99] Muchos patógenos secretan componentes que disminuyen o desvían la respuesta inmunitaria del huésped.[96] Algunas bacterias forman biopelículas para protegerse de las células y proteínas del sistema inmunitario. Estas biopelículas están presentes en muchas infecciones que cursan con éxito, como por ejemplo las infecciones crónicas producidas por Pseudomonas aeruginosa y Burkholderia cenocepacia características de la Fibrosis quística.[100] Otras bacterias generan proteínas de superficie que se ligan a los anticuerpos, volviéndolos ineficaces. Como ejemplos se pueden citar: estreptococos (proteína G), Staphylococcus aureus (proteína A), y Peptostreptococcus magnus (proteína L).[101] Los mecanismos empleados por los virus para eludir al sistema inmunitario adaptativo son más complejos. El enfoque más sencillo consiste en cambiar rápidamente los epítopos no esenciales (Aminoácidos o azúcares) de la superficie del invasor, mientras se mantienen los epítopos esenciales ocultos. El VIH, por ejemplo, muta regularmente las proteínas de su envoltura viral que le son esenciales para entrar en las células huésped que son su objetivo. Estos cambios frecuentes en antígenos pueden explicar el hecho de no haber logrado producir vacunas dirigidas contra estas proteínas.[102] Otra estrategia común para evitar ser detectados por el sistema inmunitario consiste en enmascarar sus antígenos con proteínas de la célula huésped. Así, en el VIH, la envoltura que recubre al virión está formada por la membrana más externa de la célula huésped; tales virus "auto-camuflados" dificultan que el sistema inmunitario los identifique como algo no propio.[103] Historia de la inmunología
La Immunología es una ciencia que examina la estructura y función del sistema inmunológico. Se origina en la medicina y en los primeros estudios sobre las causas de la inmunidad a las enfermedades. La referencia más antigua a la inmunidad se produce durante la plaga de Atenas en el 430 a. C. Tucídides notó que algunas personas que se habían recuperado de un brote anterior de la enfermedad podían atender a los enfermos sin contraer la enfermedad por segunda vez.[104] Esta observación de inmunidad adquirida fue luego utilizada por Louis Pasteur en el desarrollo de la vacunación y en su Teoría microbiana de la enfermedad.[105] La teoría de Pasteur se oponía a las teorías contemporáneas sobre las enfermedades, tales como la Teoría miasmática. No se confirmó que los microorganismos fueran la causa de las enfermedades infecciosas hasta 1891, cuando Robert Koch enunció sus postulados, por los que recibió el Premio Nobel en 1905.[106] En 1901, con el descubrimiento del virus de la fiebre amarilla por Walter Reed, se confirmó que los virus son patógenos humanos.[107] Se produjo un gran avance en la inmunología hacia el final del siglo XIX, gracias al rápido desarrollo de los estudios de inmunidad humoral y de inmunidad celular.[108] De particular importancia fue el trabajo de Paul Ehrlich, quien propuso la Teoría de la cadena lateral para explicar la especificidad de la reacción antígeno-anticuerpo; sus contribuciones al entendimiento de la inmunología humoral fueron reconocidos con el Premio Nobel en 1908, recibido en conjunto con Elie Metchnikoff, el fundador de la inmunología celular.[109] Véase también
Referencias
Enlaces externos
|
||||||||||||
Este articulo se basa en el articulo Sistema_inmune publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores. |