Los triatominos (Triatominae) son una subfamilia de insectos perteneciente a la familia Reduviidae del orden Heteroptera/Hemiptera, conocidos a través de diversos nombres en diferentes regiones: vinchuca (desde Ecuador hasta la Patagonia), chipo (Venezuela), pito (Colombia) y barbeiro (Brasil), entre otros. Las aproximadamente 130 especies que conforman esta subfamilia son todas hematófagas, es decir, se alimentan de sangre de vertebrados. Exepcionalmente, algunas especies de triatóminos se alimentan de otros invertebrados.[1] [2] La mayoría están distribuidas a lo largo de América, con algunas pocas especies presentes en Asia, África y Australia. Estos insectos generalmente conviven con vertebrados nidícolas de los cuales chupan sangre. Todas las especies de triatóminos son vectores potenciales de la enfermedad de Chagas pero aquellas especies (como Triatoma infestans y Rhodnius prolixus) que se han adaptado a vivir con los seres humanos son consideradas "vectores importantes" del parásito responsable de esta enfermedad, Trypanosoma cruzi. Conocimientos adicionales recomendados
El descubrimientoA inicios del siglo XIX Charles Darwin hizo uno de los primeros reportes de la existencia de triatóminos en América en su diario de notas comúnmente conocido como "El viaje del Beagle" (The Voyage of the Beagle). El siguiente es un extracto de lo que él escribió el 25 de marzo de 1835:"Cruzamos el Luján, el cual es un río de talla considerable, si bien su curso hacia las costas del mar es poco conocido: es doblemente dudoso como, pasando sobre sendas planicies, no se evapora y se pierde. Dormimos en la ciudad Luján, la cual es un pequeño lugar rodeado por jardines, y constituye el distrito mas sureño en la Provincia de Mendoza; esta a cinco leguas al sur de la capital. Por la noche experimenté un ataque (no merece un nombre menor) de vinchucas, una especie de reduviideo, el gran chinche negro de las Pampas. Es de lo más molesto sentir estos insectos sin alas, de aproximadamente una pulgada de largo, trepando sobre el cuerpo. Antes de chupar se mantienen algo delgadas, pero luego se vuelven redondas e hinchadas de sangre, y en este estado se pueden aplastar fácilmente. Uno de los que llevé a Iquito, (también se consiguen en Chile y Perú) estaba muy vacío. Cuando se colocaba en una tabla, aun rodeado de gente, si se le presentaba un dedo, el insecto gallardo extendía inmediatamente su aparato chupador, atacaba, y si se le permitía, absorbía sangre. Ningún dolor causó la herida. Fue curioso ver su cuerpo durante el acto de succión, dado que en menos de 10 minutos este cambió de ser tan plano como una ostia hasta tomar una forma globular. Este banquete, el cual la vinchuca debió a uno de los oficiales, la mantuvo repleta durante cuatro meses enteros; pero la noche cuando se cumplían dos semanas, estaba ya casi lista para picar otra vez."
Ha habido considerable especulación médica sobre la posibilidad de que el contacto que Darwin tuvo con los triatóminos en Argentina haya estado relacionado con sus posteriores recaídas en una enfermedad de larga duración. Descubrimiento de la relación de los triatóminos con la enfermedad de ChagasEn 1909 el médico brasileño Carlos Chagas[3] descubrió que estos insectos eran responsables de la transmisión de T. cruzi a muchos de sus pacientes en Lassance, un poblado localizado sobre las orillas del Rio Sâo Francisco en Minas Gerais (Brasil). La gente pobre que vivía allí se quejaba de unos insectos que ellos llamaban "barbeiros" y que picaban durante la noche. Carlos Chagas colocó su primeras observaciones en palabras: "Conociendo los hábitos domiciliarios del insecto, y su abundancia en todas los domicilios de la región, inmediatamente nos detuvimos, interesados en descubrir la biología exacta del barbeiro, y de la transmisión de algún parásito al hombre o a otro vertebrado."
La relación entre el parásito, el vector y la sintomatología fue vista con escepticismo por la comunidad científica de aquel tiempo. Sin embargo, el argentino Salvador Mazza[4] retomó los estudios de Carlos Chagas, confirmó las observaciones de este en comunidades endémicas de Argentina y puso en pie una campaña de divulgación científica mundial sobre la enfermedad. El estudio de los triatóminos tomó entonces relevancia por ser un problema de salud pública. El brasileño, Herman Lent,[5] quien fue estudiante de Carlos Chagas, se consagró a la investigación de los triatóminos y junto con Peter Wygodzinsky hizo una revisión de Triatominae que fue publicada en el Boletín del Museo Americano de Historia Natural (New York, 163 (3):125-520, figuras 1-320), un compendio de cuarenta años de estudios sobre los triatóminos hasta 1979. La idea propuesta por Chagas, Mazza y Lent de mejorar las condiciones de las viviendas como medida de control de los triatóminos, sigue siendo hoy un principio fundamental en la lucha contra la enfermedad de Chagas. A este principio también se suma la necesidad de un cambio en el modelo de desarrollo económico implementado en las zonas rurales, el cual ocasiona un fuerte impacto en las mediaciones del domicilio humano, y de este modo presiona a diferentes especies de triatominos a abandonar su nicho natural.[6] [7] Si bien, hoy día el papel que juegan los triatóminos como vectores de la enfermedad de Chagas no se pone en duda entre la comunidad científica,[8] aun un alto porcentaje de las poblaciones afectadas por este mal ignora la relación de estos insectos con la enfermedad de Chagas. Esta situación evidencia la necesidad de un mayor desarrollo de los sistemas de educación pública latinoamericanos. Ciclo biológicoLos triatóminos desarrollan una metamorfosis incompleta, es decir, son hemimetábolos. Los huevos, generalmente blancos, varían en forma y tamaño según la especie; en R. prolixus miden 2 mm de largo y 0.8 mm de ancho y en T. infestans son entre 2 y 3 veces más grandes. Una hembra pone aproximadamente 10 huevos por semana y estos eclosionan luego de aproximadamente dos semanas. Una ninfa de primer estadio, que semeja un adulto, sale del huevo y pasa sucesivamente a través de los estadios 2, 3, 4 y 5. Finalmente, el quinto estadio pasa a adulto adquiriendo dos pares de alas. Los estadios ninfales duran varias semanas y hasta meses en función de su alimentación y especie. Los estadios 1, 2 y 3 pueden realizar la muda con una ingesta sanguínea completa, pero los estadios 4 y 5 normalmente requieren comer más de una vez para mudar. Los adultos pueden vivir varios meses e incluso más de un año. El ciclo biológico es particularmente corto en R. prolixus pues puede completarse, desde el huevo al adulto, en menos de medio año en condiciones de humedad, temperatura, espacio y alimentación óptimas. Esta es una de las razones por la cual R. prolixus ha sido tan cotizado como modelo de diversos estudios fisiología y comportamiento. El mantenimiento de otras especies, tales como P. geniculatus y T. dimidiata, en el laboratorio, requiere de mayores cuidados. Ecología SensorialHábitosLos triatóminos se agregan en refugios durante el día, donde consiguen condiciones microambientales estables. Salen en búsqueda de sangre bajo el cobijo de la noche, cuando el huésped duerme y el aire es fresco. Tanto los cinco estadios ninfales como los adultos son hematófagos. La mayor parte de las especies están asociadas con vertebrados nidícolas y son llamadas triatóminos silvestres. Estos viven en madrigueras bajo la tierra con roedores o armadillos, o sobre los árboles con murciélagos, peresozas o rabipelados. Algunas pocas especies (5%) viven en habitaciones humanas o en sus alrededores (peridomicilio) con los animales domésticos, a estas se les conoce como especies domésticas. Muchas especies selváticas de triatóminos están en proceso de domiciliación ("semidomésticas"). OrientaciónLos triatóminos se mueven por varias razones: para buscar comida, para conseguir pareja, en búsqueda de refugio o un lugar para alojarse, para escapar de depredadores o simplemente para explorar nuevos territorios. Tanto las ninfas como los adultos caminan (a 20±15 mm/s) para alcanzar cualquiera de estos objetivos, aunque ocasionalmente y bajo ciertas circunstancias algunos adultos vuelan distancias relativamente cortas. Con suerte un triatomino puede conseguir una ingesta sanguínea, refugio o un sitio para alojarse aun cuando sea transportado pasivamente o si llega a alguno de estos destino por azar. Por ejemplo, R. prolixus puede alcanzar el habitat doméstico siendo transportado en las hojas de palma que se utilizan en la construcción de casas rurales; y P. geniculatus puede entrar en las casas volando hipnotizado por la luz proveniente de una casa en medio de la noche tropical. Sin embargo, la posibilidades de encontrar algún recurso necesario serán mayores si el insecto utiliza información ambiental que lo lleve de manera eficiente a su objetivo. Estímulos relevantesTanto los olores como el calor que emanan del huésped sirven de guía para localizar al huésped. La olfacción en los triatóminos ha sido objeto de varias investigaciones. El dioxido de carbono de la respiración, así como el amonio, aminas y ácidos grasos de cadena corta que emanan de la piel, pelos y glándulas exocrinas de los animales vertebrados, están entre las moléculas que componen los olores que atraen a los triatóminos. La visión también sirve en la orientación de estos insectos. Durante la noche los adultos de varias especies vuelan a domicilios humanos atraídos por la luz. Luego que alcanza la piel del huésped y antes de picarlo, los triatóminos utilizan los termoreceptores de sus antenas para localizar los vasos sanguíneos, una tarea que requiere precisión, dado que estos vasos ocupan menos del 5% de la piel.[9] ComunicaciónLos triatóminos adultos producen un olor molesto (ácido isobutírico) cuando son molestados, el cual aparentemente también sirve de señal de alarma. Cuando están excitados también son capaces de emitir un sonido, apenas perceptible para el oído humano, frotando el sulco estridulatorio bajo la cabeza con movimientos rápidos del rostro. Tal vez este sonido también tenga alguna función de reconocimiento sexual.[10] Morfología y funciónAntenasLos triatóminos poseen antenas de cuatro segmentos en ambos lados de la cabeza y frente a los ojos. El primer segmento basal o escapo esta unido a la cabeza, luego le sigue un pedicelo y un flagelo compuesto en dos subsegmentos: flagelo distal y flagelo próximal. A estos dos últimos también se les llama flagelómeros y contienen la mayor parte de los pelos (u otras estructuras cuticulares) sensoriales que contienen sensores químicos, térmicos y táctiles. La distancia relativa entre las antenas y los ojos permite diagnosticar someramente los generos Rhodnius, Triatoma y Panstrongylus; estos tres géneros comprenden las especies más importantes epidemiológicamente. En el último, Panstrongylus, las antenas están muy cerca de los ojos, en Rhodnius muy lejos (cerca del ápice de la cabeza) y en Triatoma a mitad de camino entre los ojos y el ápice de la cabeza. La distribución y abundancia de los pelos en las antenas es de utilidad en la clasificación de los triatóminos. Aparato bucalEl aparato bucal, también llamado proboscide o rostro, facilita la tarea de chupar sangre en los triatóminos. Este apéndice chupador consiste en un labio segmentado en forma de canoa, cuyos bordes tienden a juntarse por encima, excepto en la base en donde se encuentra el labro, y que aloja a las demás piezas bucales que son finas y delgadas (estiletes) y constituyen dos maxilares y dos mandíbulas. El rostro de los triatóminos posee tres segmentos y en el momento de picar se dobla especialmente a la altura de la articulación de los segmentos 2° y 3°, gracias a una porción membranosa allí existente. Las mandíbulas ayudan a perforar la epidermis y los maxilares penetran en busca de un vaso capilar. En rostro en posición de reposo termina casi siempre en el proesterno, en donde hay un espacio con pequeñas estrías transversales que constituye el surco estridulatorio. El rostro es una característica común y ancestral entre los hemípteros. Una inspección rápida del rostro puede ayudar a distinguir un hemiptero triatómino de uno no hematófago. Este es largo en los hemípteros fitófagos y corto en los depredadores (entomófagos) y hematófagos, no alcanzando en este último caso el primer par de coxas. Además, en los depredadores el rostro es curvo, mientras que en los hematófagos triatóminos es recto, de manera que en reposo descansa debajo de la cabeza en estrecha relación con ésta. TóraxDel tórax de los triatóminos adultos vale la pena destacar que el pronoto, dividido en un lóbulo anterior y otro posterior, puede exhibir ornamentaciones tales como espinas y/o tubérculos de interés taxonómico. También es notorio que el mesonoto de los adultos esta reducido a un escutelo. AbdomenEl abdomen de los adultos esta compuesto de 11 segmentos. Los segmentos del 2do al 8vo son notables en las hembras, aunque en el macho el 8vo es inaparente. El primer segmento esta escondido en ambos sexos. Los últimos segmentos forman las genitalias de ambos sexos. El conectivo, es decir, la parte que bordea el abdomen, muestra un patrón de manchas que varia en color y formas según la especie. Excepto la especie Triatoma espinolai, todas las formas adultas de triatóminos son aladas. Las alas anteriores son hemélitros con una porción dura (corio) y otra membranosa (membrana). Esta características común en los hemípteros y a veces muy conspicua en algunos de sus miembros, le debe su nombre a este orden. Las alas posteriores que se doblan debajo de las primeras son delgadas y membranosas. Las características de la genitalia permiten fácilmente diferenciar machos de hembras. En los machos la genitalia es redondeada y en las hembras es triangular y sobresale del abdomen. NinfasTal como lo expone Rodrigo Zeledón, las ninfas de los triatóminos aunque parecen pequeños adultos, muestran características particulares: "Las ninfas no sólo carecen de alas y de aparato genital, sino también de ocelos, escutelo y conectivo. En ellas el tórax posee sus tres porciones más o menos nítidas [pronoto, mesonoto y metanoto] y el abdomen muestra 10 segmentos, aunque los últimos son muy reducidos. Las características del tórax dorsal permiten reconocer cualquiera de los cinco estadios ninfales y el aspecto de los últimos segmentos abdominales de la ninfa de quinto estadio permite determinar el futuro sexo del adulto."
FisiologíaVisiónLos triatóminos tienen ojos compuestos con aproximadamente 300 omatidios cada uno. Son ojos de aposición con bastones o rabdomas abiertos (una característica común en Heteróptera), en los cuales un anillo de seis rabdómeros de las células retinulares 1-6, rodean a un par central de rabdómeros de las células retinulares 6 y 8. Si bien, los ojos de superposición generalmente son el sistema más adecuado para insectos de vida nocturna, los ojos de los triatóminos cuentan con un sistema de adaptación a las condiciones de iluminación del día que les permite maximizar la cantidad de luz que llega a los receptores retinales en condiciones de poca luz.[11] En condiciones de iluminación de baja intensidad (<0.06 microW/cm2), los triatóminos muestran fotofobia a la luz natural y a luces monocromáticas con longitudes de onda de 397, 458, 499 y 555 nm. Son menos sensibles a las longitudes de onda de 357 nm (ultravioleta) y 621 nm (naranja oscuro), así como a longitudes de onda entre 665 y 695 nm (la parte roja del espectro).[12] Los triatóminos poseen también un par de ocelos (ojos simples)[13] sobre el dorso de la cabeza, detrás de los ojos compuestos. Estos muestran un completo desarrollo en el estado adulto. Los ocelos, junto con los ojos compuestos, regulan la respuesta fototáctica, es decir, los triatóminos reconocen la iluminación del ambiente y responden a esta, generalmente evadiendo la luz intensa.[14] Glándulas salivalesLa estructura de las glándulas salivales ha sido estudiada en detalle en T. infestans.[15] Estas se puden observar fácilmente al arrancar la cabeza de un triatomino. Cada insecto presenta un par de estas glándulas y cada una contiene tres unidades que difieren en tamaño, color y función: unidad principal, unidad suplementaria y unidad accesoria. Cada unidad está constituida por una capa sencilla de células epiteliales que rodean un espacio central amplio. A su ves, las unidades glandulares están cubiertas por una lamina basal gruesa que contiene aglomeraciones de células musculares. Sobre la membrana celular sobresalen microvellosidades que incrementan la superficie de secreción hacia el espacio central. Ocasionalmente se observan vesículas sobresaliendo entre las microvellosidades. El interior de las células de las glándulas salivales contiene retículo endoplasmático en abundancia y algunos cuerpos lípidos. La saliva de los triatóminos tiene como función principal evitar que su picadura produzca señales de alerta en el huésped y facilitar el transito de sangre hacia el intestino. Está equipada con sustancias que contrarrestan los procesos de defensa de los sistemas circulatorio e inmune de la víctima de la picada. Contiene proteínas especializadas (lipocalinas y similares) para inhibir la cascada de la coagulación, limitar la activación de las plaquetas y prevenir la vasoconstricción. Otras sutancias adicionales sirven para apaciguar la respuesta de dolor, inflamatoria e inmune del huésped. Aparato digestivoLos triatominos succionan sangre a través de la proboscide. La sangre ingerida pasa a la faringe, luego al esófago y se almacena en el estómago o promesenterón. En el esófago y promesenterón se encuentran más del 95% de los simbiontes. Eventualmente, la ingesta pasa al postmesenterón que consiste en una especie de "intestino delgado". En la parte anterior del postmesenterón la sangre sufre un proceso de digestión, y en la parte posterior, un proceso de absorción. Finalmente, los restos de la ingesta, así como algunas bacterias simbiontes y parásitos tripanosómidos, son evacuados a través del recto. Cuando un triatómino esta infectado con el protozoario que produce la enfermedad de Chagas, T. cruzi, los epimastigotes de este se ubican a lo largo de todo el intestino delgado, hasta el recto. Sin embargo, los tripomastigotes metacíclicos, las formas de T. cruzi que pueden infectar al huésped vertebrado, solo se desarrollan en el recto. La composición bioquímica del tracto de los triatóminos determina estos estados de desarrollo. La mayor parte de grupos de insectos utilizan las serino proteasas (tripsinas y quimotripsinas) y esterasas como las enzimas digestivas principales, en acorde con el pH neutro o básico de sus tractos digestivos. Sin embargo, el interior del tracto digestivo de algunos insectos, incluyendo los hemípteros, es ácido y utiliza un tipo diferente de enzimas, las cisteo y/o asparto proteasas. En el caso particular de los triatominos, se han identificado varios tipos de enzimas digestivas: proteasas ácidas (catepsinas B, D y L), carboxipeptidasa de lisosoma B y aminopeptidasa. SimbiontesDado que los triatóminos son estrictamente hematófagos, estos no consiguen en la sangre ciertos componentes esenciales de su dieta, de modo que necesitan la ayuda de bacterias que actúan como simbiontes que producen sustancias tales como la vitamina B. A diferencia de muchos artrópodos hematófagos, los simbiontes de los triatóminos no están insertos en células o tejidos especializados, sino que viven libres en su tracto digestivo, específicamente, en el cardia y estómago. Además, estos organismos son transmitidos de generación en generación cuando los triatóminos se alimentan de las deyecciones fecales (cropofagia) o la sangre presente en el abdomen de sus congéneres (canibalismo). El hecho de que estos insectos se agreguen en colonias facilita el desarrollo de ese comportamiento. La primera bacteria identificada en un triatomino fue Rhodococcus rhodnii en R. prolixus.[16] Eventualmente otras species de actinomicetes, principalmente de los generos Rhodococcus y Nocardia, ambos de la familia Nocardiaceae, han sido reportadas en el intestino de los triatóminos. También se han conseguido otros géneros tales como Gordonia, Streptococcus, Staphylococcus, Corynebacterum, Mycobacterium, Pseudomonas y Echericha.[17] La ausencia de simbiontes (aposimbiosis) en el intestino de los triatóminos causa varios efectos deletreos que incluyen: a) retardo en el desarrollo juvenil, b) incremento en la mortalidad juvenil, c) problemas para digerir la sangre y para defecar y d) reducción del sistema traqueal. Infecciones con los protozoarios tripanozomatidos Blastocrithidia triatominae (común en Triatoma) y Trypanosoma rangeli (común en Rhodnius) producen efectos similares. Este fenómeno no se observa con T. cruzi. Es probable que los tripanozomátidos B. triatominae y T. rangeli diezmen las poblaciones de las bacterias simbiontes y en consecuencia sus beneficios.[18] El uso de simbiontes modificados genéticamente como aplicación para el control de estos vectores esta siendo evaluado por varios grupos de investigación.[19] Las bacterias modificadas genéticamente expresarían agentes capaces de inactivar los tripanosomas en el intestino del triatomino. El desarrollo de este proyecto implica el riesgo de causar daños ecológicos, dados los efectos que estos transgénicos podrían causar al ser liberados en regiones endémicas de Latinoamérica. Homeostasis y excreciónLos triatóminos toman sangre que equivale aproximadamente a 10 veces su peso en los 3 primeros estadios ninfales, y entre 3 y 4 veces su peso en los estadios ninfales 4 y 5 y en la fase adulta.[20] Este excesiva ingesta de líquido implica un eventual desequilibrio fisiológico y vulnerabilidad frente a sus depredadores. La digestión de las proteínas y purinas contenidas en la sangre conlleva a la producción de altas cantidades de amoníaco, el cual por ser sumamente tóxico debe ser transformado rápidamente y eventualmente excretado. El órgano esencial del sistema de homeostasis y excretor de los triatóminos lo constituyen los túbulos de Malpighi. Estos consisten en cuatro túbulos ciegos, delgados (30-100 μm) y relativamente largos (2-100 mm) embebidos en la hemolinfa del insecto que se conectan al recto a través de ampollas. Las cuatro ampollas forman una especie de roseta al rededor en la conexión del tubo digestivo delgado con el recto. La pared de los túbulos esta formada por una capa de células. Cada tubo esta compuesto en dos segmentos que varían en estructura y función. El segmento distal o posterior es traslúcido y un tanto amarillento, y toma sustancias tóxicas, sales y agua de la hemolínfa. El otro segmento, proximal o anterior (conectado al recto) es generalmente de color blanco opaco y esta implicado en la reabsorción de sales hacia la hemolinfa. Existen diferencias entre los tipos celulares de cada segmento. Los triatóminos convierten el amoníaco en ácido úrico, una estrategia común en artrópodos terrestres. El ácido úrico es relativamente insoluble e inerte, por lo cual puede ser retenido en forma de cristales por largos períodos de tiempo y expulsado con bajo consumo de agua. La síntesis de ácido úrico ocurre principalmente en los cuerpos grasos e implica la adición progresiva de amoníaco. Puesto que la molécula de ácido úrico tiene un solo átomo de hidrógeno por cada átomo de nitrógeno, los triatóminos utilizan menos agua para su síntesis. Esta estrategia resulta conveniente dado que los triatóminos pueden pasar semanas y hasta meses sin suministro (sanguíneo) de agua. El ácido úrico pasa a los túbulos de Malpighi a través de una ruta aun desconocida y de allí al recto de donde es excretado en forma de discos blanco amarillentos. Glándulas exocrinasLos triatóminos tienen cinco diferentes pares de glándulas que al igual que en otros reduvideos se encuentran en el tórax o en el abdomen: glándulas metasternales, glándulas de Brindley, glándulas dérmicas (similares a las glandulas de Brindley pero más pequeñas), glándulas ventrales y glándulas abdominales. Las más estudiadas son las dos primeras, las cuales producen olores y sabores de beneficio para el insecto. Glándulas de Brindley: Estas son estructuras simples con forma saco y se extienden dorsalmente en la parte lateral del segundo segmento abdominal, aunque son de origen metatoráxico y se abren en el episterno metatoráxico justo arriba del lóbulo supracoxal del episterno III. En las especies donde estas glándulas han sido descritas no se ha encontrado diferencia de talla entre hembras y machos. Segregan ácido isobutírico y otros ácidos carboxílicos, así como, alcoholes y esteres. Glándulas metasternales: Están ubicadas en la parte ventral del metatorax, tienen forma de pera y poseen un tubo sin ramificaiones cada una. Cada tubo se retuerce entre el metendosternito y la cavidad metacoxal. Estas glándulas no poseen pigmentos ni glándulas accesorias. Su apertura es diminuta y puede observarse claramente en la parte lateral de la cavidad apofisea esternal. Las glándulas metasternales han sido descritas en al menos 12 especies de Triatominae. Son más pequeñas en la tribu Rhodniini que en la tribu Triatomini. La secreción de estas glándulas ha sido reportada en Panstrongylus geniculatus como una sustancia muy volátil y sin color, en cambio en T. infestans su color es amarillento. En las glandulas metastermales de Dipetalogaster maxima se ha identificado 3-metil-2-hexanona. Las glándulas metastermales de las hembras de R. prolixus, T. infestans y T. brasiliensis producen una feromona que atrea a los machos.Véase también: Olfacción en Triatominae
EpidemiologíaTanto las especies domésticas (que habitan en el domicilio o peridomicilio humano) como las especies selváticas, pueden transmitir el parásito de la enfermedad de Chagas a los seres humanos y a los mamíferos; las aves son inmunes al parásito. La enfermedad es transmitida principalmente de persona a persona a través de los triatóminos: el parásito T. cruzi es llevado del vertebrado al insecto a través de la sangre, y del insecto al vertebrado a través de las heces del primero, y no a través de la saliva.[21] Los triatóminos viven principalmente en domicilios de gente pobre, hechos con materiales rústicos y donde hay poca higiene. Se puede reconocer la presencia de triatóminos en una casa por sus deyecciones fecales, restos de muda, huevos o reconociendo los mismos insectos. Estos generalmente dejan dos tipos de eces como líneas sobre las paredes de casas infectadas; unas son blancas con ácido úrico, otras son oscuras (negras) conteniendo residuos de sangre. Los huevos blanquecinos o los restos de muda pueden ser conseguidos en las ranuras de las paredes o en el suelo. Luego de chupar sangre estos individuos se mueven con dificultad y se les puede identificar fácilmente. La colonización del habitat humano por especies tales como P. geniculatus, que normalmente fueron consideradas "sélvaticas", evidencia la capacidad de adaptación de estas especies a ambientes poco habituales.[22] La búsqueda del nicho doméstico por parte de las especies selváticas es consecuencia de la perturbación de su nicho selvático (deforestación, caza incontrolada de huéspedes naturales, etc) que ha llevado a menoscabar sus fuentes de alimentación. Estas especies se han visto forzadas a recurrir a fuentes alimentarias en el domicilio humano, donde generalmente habitan familias de escasos recursos. Estos domicilios presentan condiciones que facilitan la colonización de los triatóminos tales como, la cercanía de animales domésticos a las habitaciones y la infraestructura de la viviendas, que presentan grietas en las paredes y techos de palma que proveen refugio a los triatóminos. Tribus, géneros y número de especies descritas
Nota: Para más detalles ver Galvão et al (2004) Los vectores más importantesTodas las 139 especies de Triatominae son potencialmente capaces de transmitir el parásito T. cruzi a los seres humanos pero las siguientes cinco especies constituyen los vectores de la enfermedad de Chagas más importantes epidemiológicamente.
Bibliografía
Notas
Enlaces externos
Curiosidades (videos)
|
|||||||||||||||||||||||||||||||
Este articulo se basa en el articulo Triatominae publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores. |