Uranio empobrecido



Se llama uranio empobrecido a aquél que contiene una fracción de isótopo U-235 inferior a la natural (0,71%). Se trata de un residuo del enriquecimiento y del reprocesamiento del uranio, constituido esencialmente de U-238.

Tabla de contenidos

Producción y disponibilidad

El uranio empobrecido proviene de dos fuentes: el enriquecimiento y el reprocesamiento del uranio. Su composición es ligeramente diferente según provenga del uno o del otro.

El uranio natural se compone de tres isótopos: el U-238, que es la mayor parte de la masa (99,28%); el U-235 (0,71%), y el U-234 (0,0054%). El uranio natural se enriquece (es decir, concentra) en U-235 para su uso en aplicaciones militares (propulsión nuclear y armas nucleares) y en la mayor parte de las aplicaciones civiles (propulsión nuclear, generadores termoeléctricos y reactores nucleares de producción eléctrica). El residuo del proceso de enriquecimiento, consistente sobre todo en U-238, es lo que se denomina uranio empobrecido. Su composición depende del grado de enriquecimiento, siendo unos valores finales típicos 99,8 % U-238; 0,2 % U-235 y 0,001 % U-234. El uranio empobrecido contiene solo de un 0.2% a un 0.4% de U-235, el restante es concentrado en el uranio enriquecido. Dado que los isótopos U-235 y U-234 son también radiactivos, el uranio empobrecido es aún menos radiactivo que el uranio natural.

El uranio enriquecido utilizado en los reactores nucleares de fisión pierde al cabo de un cierto tiempo su capacidad de generar energía porque el U-235 se consume, generándose otros átomos como plutonio (muy radiotóxico), neptunio, americio y tecnecio así como el isótopo artificial del uranio (U-236 también radiotóxico). Entonces se extrae el "combustible" del reactor y, según los países, se almacena como desecho o se reprocesa, aumentando en este último proceso la concentración de U-235 de nuevo. Uno de los desechos del proceso de reprocesamiento es, de nuevo, uranio empobrecido. En este caso, además de U-238 y U-235 el material contiene trazas de plutonio y U-236, lo cual aumenta ligeramente su radiactividad. Los países que utilizan el reproceso de combustible nuclear son en la actualidad Estados Unidos, Gran Bretaña, Japón y Francia.

La mayor parte del uranio empobrecido producido se guarda en forma de hexafluoruro de uranio (UF6) en cilindros de acero de 12,7 toneladas de capacidad que se almacenan cerca de las plantas de enriquecimiento. Debido a los riesgos ligados al almacenamiento como UF6, el gobierno estadounidense ha iniciado la transformación de su inventario de UF6 en uranio metálico, más seguro y con aplicaciones potenciales.

Inventario Mundial de Uranio Empobrecido
País Organización Toneladas almacenadas Fecha
 Estados Unidos DOE 480.000 2002
 Rusia FAEA 460.000 1996
 Francia COGEMA 190.000 2001
 Reino Unido BNFL 30.000 2001
 Alemania URENCO 16.000 1999
 Japón JNFL 10.000 2001
 China CNNC 2.000 2000
 Corea del Sur KAERI 200 2002
 Sudáfrica NECSA 73 2001
TOTAL 1.188.273 2002
Fuente: WISE Uranium Project

El almacenamiento de estas ingentes cantidades de uranio empobrecido cuesta dinero mientras que su conversión de UF6 a metal es relativamente económica. Por ello los gobiernos de los países citados en la tabla fomentan el uso del uranio empobrecido y lo venden como metal a bajo precio.

Propiedades y aplicaciones

El metal de uranio empobrecido tiene una densidad extremadamente alta (19 kg/l), algo mayor que la del uranio natural y mucho mayor que la del plomo. Esta característica lo hace interesante para ciertas aplicaciones civiles y militares.

Aplicaciones militares

El principio de la munición antiblindaje consiste en impulsar un núcleo metálico denso a alta velocidad para así concentrar un máximo de energía cinética en el punto de impacto. Los dos metales utilizados en esta aplicación son el tungsteno y una aleación de uranio empobrecido y titanio llamada Staballoy. Aunque el tungsteno es ligeramente más denso, el uranio empobrecido tiene dos ventajas. En primer lugar, su fractura en el impacto genera fragmentos afilados, que penetran mejor el blindaje. En segundo lugar, es pirofórico, es decir, se inflama espontáneamente al contacto con el aire por encima de cierta temperatura (típicamente 600ºC). Así, cuando un obús de uranio empobrecido alcanza un blanco no sólo penetra el blindaje sino que además se inflama al llegar al interior del vehículo, incinerando a la tripulación o desatando la explosión del combustible o las municiones.

Se cree que entre 17 y 20 países incluyen munición de uranio empobrecido en su arsenal aunque sólo los EE. UU. y el Reino Unido han admitido haberlas usado, en particular en los conflictos de Bosnia (1995), Kosovo (1998) e Iraq (1991 y 2003).

La alta densidad del uranio empobrecido también lo hace adecuado para incorporarlo a blindajes de carros de combate. Se cree que el M1 Abrams estadounidense es un ejemplo de este uso.


Existe una controversia sobre si las armas a base de uranio empobrecido deberían ser prohibidas por las convenciones internacionales. El argumento de sus detractores es que el uranio se pulveriza en la explosión, formando nubes de partículas ligeramente radiactivas que contaminan amplios territorios[1]. En 2001 la ONU averiguó que, contrariamente a lo asumido anteriormente, la munición de uranio empobrecido estadounidense contiene plutonio y proviene por tanto de plantas de reprocesamiento, no de enriquecimiento, por lo cual su radiactividad es más alta de lo que se creía [2]. El ejército estadounidense lo admitió y lanzó medidas para corregirlo.

Aplicaciones civiles

Por su alta densidad el uranio empobrecido se utiliza en la fabricación de:

  • Estabilizadores para aviones, satélites artificiales y buques
  • Contrapesos para giróscopos o perforadoras
  • Blindajes para las fuentes radiactivas utilizadas en medicina y en la industria

También se ha utilizado en el pasado para hacer esmaltes y vidrios de colores. Estos usos han sido abandonados en las últimas décadas por la preocupación sobre los efectos del uranio sobre la salud.

Riesgos para la salud

El uranio empobrecido tiene una radiactividad baja (vida media comparable a la edad de la Tierra), aproximadamente un 60% de la del uranio natural. Pero, como el uranio natural, posee riesgos toxicológicos debido a su comportamiento como metal pesado en el organismo.

Riesgos toxicológicos

El uranio posee riesgos químicos debido a su comportamiento como metal pesado en el organismo. Debido a eso puede causar trastornos renales y en la sangre del mismo modo que el plomo o el mercurio e incluso ciertas enfermedades a largo plazo (puede provocar cáncer si es ingerido como parte de la dieta o inhalado).

Los límites de incorporación de uranio empobrecido en forma química soluble en el organismo, fijados por razones toxicológicas, son de 0.5 microgramos por kilo de peso corporal, que traducido para un adulto normal son:

  • por inhalación: una concentración en aire de 1 microgramo por m3.
  • por ingestión: 11 miligramos al año ingeridos.

Si la forma química en la que se encuentra el uranio es insoluble esos límites son 10 veces mayores.

El tratamiento debido a una intoxicación (ingestión muy superior a esos límites) de uranio empobrecido sólo debe hacerse en hospitales especializados y consiste en una transfusión intravenosa lenta de bicarbonato sódico al 1.4 % isotónico para incrementar la excreción vía orina y heces del uranio.

En noviembre de 2006 un equipo francés de investigación anunció que incluso dosis muy pequeñas de uranio empobrecido pueden tener efectos sobre el organismo, en particular efectos cognitivos. Maâmar Souidi y sus colaboradores alimentaron por vía oral pequeñas dosis de uranio a ratas y constataron que el metal se acumulaba en el cerebro, algo nunca observado hasta la fecha y para lo que nadie tiene aún explicación. Esto tuvo como consecuencia en las ratas una disminución de la memoria a corto plazo, un aumento del estrés y un aumento de la duración del sueño paradójico. No se sabe aún si estos resultados son extrapolables al hombre.

Riesgos radiológicos

La radiactividad generada por el uranio empobrecido es inferior a la del uranio natural. La exposición a estos materiales como sólidos compactos no tiene apenas riesgos porque la débil radiación que emiten es detenida por la epidermis. Sin embargo, si el uranio empobrecido se encuentra en forma de gas o de polvo y penetra en los pulmones entonces su radiactividad sí puede ser nociva por actuar en el interior mismo del cuerpo, pudiendo teóricamente generar cáncer de pulmón aunque, según la OMS, "habría que inhalar grandes cantidades de polvo (varios gramos) para generar un riesgo detectable de cáncer de pulmón."[cita requerida]

La OMS recomienda realizar una descontaminación de las zonas de impacto de munición de uranio enriquecido después de un conflicto si queda sobre el terreno un número importante de proyectiles. Mientras se realiza la limpieza, puede ser aconsejable acordonar la zona, sobre todo si los niños tienen acceso a ella.

resulta inverosímil que pueda haber correlación entre las eventuales situaciones de exposición a la radiactividad del Uranio empobrecido y los efectos que se vienen indicando en miembros del personal civil y militar
Nota informativa de la SEPR (2001)

Véase también

  • Aplicaciones militares del uranio empobrecido

Enlaces externos

  • ATSDR en Español - ToxFAQs™: Uranio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
  • ATSDR en Español - Resumen de Salud Pública: Uranio: Departamento de Salud y Servicios Humanos de EE.UU. (dominio público)
  • Uranio empobrecido: Origen, exposición y efectos en la salud. OMS
  • OMS (en inglés)
  • Sobre municiones de uranio empobrecido (en inglés)
  • Estudio legal Estudio realizado a partir del fallo del Tribunal de Justicia Internacional de 1996
  • Nota de la SEPR sobre el uranio empobrecido

Referencias

  • Maâmar SOUIDI et al. (Noviembre 2006): «Uranium : actif même à faible dose», en La Recherche, Nº nº 402. ISSN 00295671
 
Este articulo se basa en el articulo Uranio_empobrecido publicado en la enciclopedia libre de Wikipedia. El contenido está disponible bajo los términos de la Licencia de GNU Free Documentation License. Véase también en Wikipedia para obtener una lista de autores.
Su navegador no está actualizado. Microsoft Internet Explorer 6.0 no es compatible con algunas de las funciones de Chemie.DE.