Científicos del CSIC abren la puerta a mejorar la eficiencia en la fermentación de la cerveza lager
El genoma mitocondrial de diferentes especies de levaduras demuestra que es posible modificar la temperatura de fermentación
Un equipo internacional con participación de un investigador del Consejo Superior de Investigaciones Científicas (CSIC) ha logrado abrir la puerta a mejorar la eficiencia en la fermentación de la cerveza lager. Los científicos, en dos trabajos coordinados que aparecen publicados en Science Advances, han empleado el genoma mitocondrial de diferentes especies, incluidas algunas cepas de cerveza ale, y lo han introducido en los híbridos de levadura encargados de la producción de cerveza lager. El resultado es la mejora de crecimiento a temperaturas altas, lo que además demuestra que el ADN mitocondrial influye en la capacidad de crecimiento a altas y bajas temperaturas de estos microorganismos.
La producción de cerveza lager, que copa el 90% de la producción mundial de esta bebida, se lleva a cabo por híbridos interespecíficos entre una cepa de cerveza ale Saccharomyces cerevisiae y una cepa tolerante a baja temperatura, la Saccharomyces eubayanus. A diferencia de la cerveza ale, que se fermenta con S. cerevisiae a temperaturas de entre 15 y 25°C, la lager se fermenta a bajas temperaturas, de entre 12 y 18°C, lo que requiere más tiempo.
Los investigadores han descubierto que manipular el genoma mitocondrial de los híbridos de lager e introducir el genoma mitocondrial de S. cerevisiae permite fermentar a altas temperaturas.
“Ahora podemos plantear elevar las temperaturas del proceso, que podría ser más rápido. Además, se eliminarían los sistemas de refrigeración, lo que aumentaría la productividad al mismo tiempo que se reducirían los costes. Hemos producido una patente sobre cómo mejorar las cepas cerveceras en base a estos datos”, explica David Peris, investigador del CSIC en el Instituto de Agroquímica y Tecnología de Alimentos.
En colaboración con científicos de la Universidad de Washington y la Universidad de Wisconsin-Madison, los investigadores observaron primero cómo, al introducir ciertos genes de S. uvarum (otra especie tolerante a bajas temperaturas) en S. cerevisiae, estos podían complementar la capacidad de crecer a bajas temperatura. Estos genes de tolerancia eran de origen mitocondrial, el cual incluye un gen mitocondrial, denominado COX1, como un factor importante.
En una segunda aproximación, generaron híbridos entre S. cerevisiae y S. uvarum o S. cerevisiae y S. eubayanus, con genoma mitocondrial de una de las tres especies (S. cerevisiae, S. uvarum o S. eubayanus). Los híbridos con genoma mitocondrial S. cerevisiae eran capaces de crecer mejor a altas temperaturas, mientras que con temperatura baja lo hacían peor o no crecían. Cuando mantenían el genoma mitocondrial de S. uvarum o S. eubayanus, estos híbridos revertían el perfil de crecimiento, creciendo mejor a bajas temperaturas y peor a altas.
“Hemos sido capaces de demostrar que uno de los factores genéticos implicados en la capacidad de crecer a altas y bajas temperaturas se encuentra en el genoma mitocondrial. Esto nos ha permitido detectar que el gen mitocondrial COX1, que codifica para una proteína que forma parte de la cadena de transporte electrónico, importante para el metabolismo respiratorio, tiene una gran influencia en la capacidad de crecer a altas o bajas temperaturas. Nuestros resultados sirven para abrir nuevas líneas de investigación transversal para entender cómo otros organismos se adaptan a cambios en la temperatura terrestre y se diferencian unas especies de otras”, agrega Peris.
Publicación original
EmilyClare P. Baker, David Peris, Ryan V. Moriarty, Xueying C. Li, Justin C. Fay, Chris Todd Hittinger; "Mitochondrial DNA and temperature tolerance in lager yeasts."; Science Advances.
Xueying C. Li, David Peris, Chris Todd Hittinger, Elaine A. Sia, Justin C. Fay; "Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast."; Science Advances.
Noticias más leídas
Publicación original
EmilyClare P. Baker, David Peris, Ryan V. Moriarty, Xueying C. Li, Justin C. Fay, Chris Todd Hittinger; "Mitochondrial DNA and temperature tolerance in lager yeasts."; Science Advances.
Xueying C. Li, David Peris, Chris Todd Hittinger, Elaine A. Sia, Justin C. Fay; "Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast."; Science Advances.
Organizaciones
Más noticias del departamento ciencias

Reciba la química en su bandeja de entrada
Al enviar el formulario, se muestra usted de acuerdo con que LUMITOS AG le envíe por correo electrónico el boletín o boletines seleccionados anteriormente. Sus datos no se facilitarán a terceros. El almacenamiento y el procesamiento de sus datos se realiza sobre la base de nuestra política de protección de datos. LUMITOS puede ponerse en contacto con usted por correo electrónico a efectos publicitarios o de investigación de mercado y opinión. Puede revocar en todo momento su consentimiento sin efecto retroactivo y sin necesidad de indicar los motivos informando por correo postal a LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlín (Alemania) o por correo electrónico a revoke@lumitos.com. Además, en cada correo electrónico se incluye un enlace para anular la suscripción al boletín informativo correspondiente.
Noticias más leídas
Más noticias de nuestros otros portales
Contenido visto recientemente

Donaldson Europe B.V.B.A. - Löwen, Bélgica

Falling Walls anuncia los galardonados con el Premio al Avance Científico del Año 2023 - "Estos extraordinarios avances cambiarán la faz del mundo y demostrarán de manera impresionante lo que el ingenio, la curiosidad y el coraje pueden lograr"
Virus_ARN_bicatenario
Incidencia
Proteína_ácida_fibrilar_glial
Barreras_biológicas
Categoría:Pesticidas
Teoría_del_funcional_de_la_densidad

Batería 2030+: Inventar las baterías sostenibles del futuro
Sulfato_de_sodio
Poliolefina
