Descubren la presencia de yodo en la estratosfera
Estudios previos se centraban en la capacidad de destrucción de la capa de ozono del cloro y el bromo, que se encuentran en mayor concentración en la atmósfera
NASA
La mayoría de las investigaciones sobre la química de halógenos – los elementos químicos flúor, cloro, bromo, yodo, astato y teneso - en la estratosfera se han centrado en la capacidad de destrucción de la capa de ozono de las sustancias cloradas y bromadas. Estas sustancias son los halógenos más abundantes en la atmósfera y además sus tiempos de reactividad son suficientemente largos como para ser transportados a la estratosfera, que es donde participan en la destrucción del ozono. Sin embargo, el nuevo trabajo confirma que los compuestos yodados, a pesar de tener unos tiempos de vida más cortos, también pueden llegar a la atmósfera y afectar a la capa de ozono.
“Los resultados muestran la importancia de considerar la química de yodo tanto en la troposfera como en la estratosfera en los modelos climáticos, ya que la emisión natural de sustancias yodadas a la atmósfera es altamente dependiente de la evolución del clima y se espera que el impacto de las sustancias yodadas aumente en el futuro respecto a las fuentes cloradas y bromadas”, destaca Alfonso Saiz-López, investigador del CSIC en el Instituto de Química Física “Rocasolano”.
El grupo liderado por Saiz-López estudia desde hace más de una década la contribución de las fuentes naturales de halógenos de vida corta, como el yodo, sobre la capacidad oxidativa de la tropósfera y la estratósfera. En esta ocasión, ha colaborado un equipo norteamericano pionero en obtener medidas cuantitativas de los niveles de yodo presentes en la estratosfera. Las mediciones del yodo tanto en fase gaseosa como en fase aerosol las han realizado mediante el laboratorio instalado en el avión Gulfstream-V del NCAR (National Center for Atmospheric Research), que posee instrumentación de última tecnología para el análisis de la alta atmósfera. “Debido a que no es sencillo identificar el límite exacto entre la alta troposfera y la baja estratosfera durante el vuelo, se utilizó la relación existente entre los niveles de vapor de agua (H2O) y O3, que son muy diferentes entre ambas regiones”, comenta el científico del CSIC Carlos Cuevas, también del Instituto de Química Física “Rocasolano”.
El trabajo sugiere también que la pérdida de ozono estratosférico debido a la presencia de yodo ocurre tanto por procesos químicos como físicos. “En 2015 publicamos un artículo con una fuerte componente de modelado el que sugeríamos que el yodo emitido por los océanos podía llegar a la estratosfera en cantidades significativas. En ese artículo se sugerían eficientes reacciones de reciclado heterogéneo del yodo inorgánico sobre cristales de hielo y aerosoles atmosféricos como un mecanismo para que nuestras predicciones fueran consistentes con las medidas existentes hasta ese momento”, explica Saiz-López. “Las medidas realizadas con el Gulfstream-V –apunta el investigador- confirman que el mecanismo que propusimos (o uno muy equivalente) ocurre en la atmósfera real, aunque su eficiencia, velocidad y distribución espacial no sea completamente conocida todavía. Esto abre un abanico de nuevos estudios a realizar, tanto desde un enfoque teórico como experimental”.
Publicación original
Theodore K. Koenig, Sunil Baidar, Pedro Campuzano-Jost, Carlos A. Cuevas, Barbara Dix, Rafael P. Fernandez, Hongyu Guo, Samuel R. Hall, Douglas Kinnison, Benjamin A. Nault, Kirk Ullmann, Jose L. Jimenez, Alfonso Saiz-Lopez y Rainer Volkamer; "Quantitative Detection of Iodine in the Stratosphere."; Proceedings of the National Academy of Sciences (PNAS).