Partículas y antipartículas en un superconductor nanométrico
A temperaturas muy bajas, algunos metales se convierten en superconductores y cambian radicalmente sus propiedades eléctricas y magnéticas. En particular, los superconductores, que tienen numerosas aplicaciones, no ejercen resistencia al paso de la corriente eléctrica, por lo que la conducción de los electrones se realiza sin pérdidas de energía.
“Cuando un material superconductor se encuentra en su estado de energía más baja, se convierte en una onda cuántica colectiva formada por pares de Cooper, parejas de electrones que se unen a pesar de ser cargas negativas que tienden a repelerse. En nuestro trabajo hemos demostrado esta superconductividad inducida en hilos semiconductores de tamaño nanométrico”, explica Ramón Aguado, investigador del CSIC en el Instituto de Ciencia de Materiales de Madrid.
Hacia la computación cuántica topológica
En estos nanohilos semiconductores acoplados a contactos de vanadio, un material superconductor, los investigadores han analizado las propiedades de la onda cuántica colectiva cuando es excitada y sale de su estado de energía más baja. “Nuestro trabajo ha explicado por primera vez las propiedades magnéticas de estos estados excitados. Hemos demostrado, tal y como contempla la teoría, que estas propiedades magnéticas cambian cuando pasamos de tener pares de Cooper a superposiciones de electrones y huecos, las cuales se denominan estados de Andreev”, precisa el investigador del CSIC.
Esos “huecos” son en realidad la ausencia de electrones o de carga eléctrica, la cual se comporta de manera efectiva como una partícula cargada positivamente. Aguado explica: “En un superconductor, un hueco es, a todos los efectos, la antipartícula del electrón. Gran parte del interés de estos sistemas reside en la posibilidad de crear estados de Andreev a energía cero. Estas excitaciones tienen la peculiaridad de que son mitad electrón mitad hueco, o lo que es lo mismo, partículas iguales a sus antipartículas, los denominados fermiones de Majorana”.
Estos fermiones, aparte del interés fundamental que tienen, podrían dar lugar a formas de computación cuántica más robustas, sin tolerancia a posibles fallos, como la computación cuántica topológica. Según el investigador del CSIC, se especula que los neutrinos son fermiones de Majorana, a pesar de que aún no existen pruebas definitivas.
“Lo interesante es que se podría demostrar esta propiedad relativista en la nanoescala antes que en los grandes aceleradores de partículas. Asimismo, hay un gran interés en su posible aplicación tecnológica a largo plazo”, agrega Aguado.
Publicación original
Más noticias del departamento ciencias
Reciba la química en su bandeja de entrada
Al enviar el formulario, se muestra usted de acuerdo con que LUMITOS AG le envíe por correo electrónico el boletín o boletines seleccionados anteriormente. Sus datos no se facilitarán a terceros. El almacenamiento y el procesamiento de sus datos se realiza sobre la base de nuestra política de protección de datos. LUMITOS puede ponerse en contacto con usted por correo electrónico a efectos publicitarios o de investigación de mercado y opinión. Puede revocar en todo momento su consentimiento sin efecto retroactivo y sin necesidad de indicar los motivos informando por correo postal a LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlín (Alemania) o por correo electrónico a revoke@lumitos.com. Además, en cada correo electrónico se incluye un enlace para anular la suscripción al boletín informativo correspondiente.