Descubierto en bacterias un mecanismo de digestión basado en el solapamiento de ARN
CSIC
Durante la transcripción, las cadenas de ADN se traducen en ARN que será codificado en proteínas. El investigador del CSIC en el Instituto de Agrobiotecnología (centro mixto del CSIC, la Universidad Pública de Navarra y el Gobierno de la comunidad), coautor del artículo, Íñigo Lasa, explica: “Hemos descubierto que las bacterias Gram+ también producen una gran cantidad de ARN no codificante que se solapa con su homólogo inverso, el ARN codificante, como las dos hileras de una cremallera”.
Cuando la cremallera se cierra, entra en acción la enzima RNase III, que actúa como una tijera y corta la doble cadena de ADN en pequeños fragmentos de 20 nucleótidos. Lasa cree que “este mecanismo podría servir para filtrar parte del ARN codificante que se produce en cantidades insuficientes como para dar lugar a proteínas funcionales”.
Este mecanismo puede tener varias funciones en la célula. Por un lado, establecería el nivel mínimo que debe alcanzar un ARN para traducirse a proteína. “De este modo, se evitaría que la célula quedase saturada de proteínas que se producen en cantidades insuficientes para llevar a cabo su función”, indica el investigador del CSIC. Por otro lado, coordinaría la expresión de genes vecinos cuyas moléculas de ARN también se solapan en muchas ocasiones, evitando que ambos genes se expresen simultáneamente, porque el proceso de digestión sólo permitiría sobrevivir al gen transcrito que se encuentra en mayor cantidad.
La investigación se ha llevado a cabo gracias a la secuenciación del ARN (transcriptoma) de S. aureus mediante técnicas de secuenciación masiva. Además, el equipo ha descubierto que este mecanismo también tiene lugar en otras bacterias Gram+. Según otro de los autores del trabajo e investigador en el mismo centro, Alejandro Toledo, “nos encontramos frente a un nuevo proceso de regulación conservado en bacterias”.
Toledo cree que el estudio añade una nueva dimensión al control global de la expresión de los genes. “No sería descabellado pensar que las moléculas de ARN pequeñas generadas por la digestión de los ARN solapantes fuesen las precusoras evolutivas de los microARN de las células eucariotas”, añade.
S. aureus reside de manera inocua en la piel del ser humano y un tercio de la población adulta es portador nasal de dicha bacteria. Sin embargo, si consigue atravesar la barrera epitelial y alcanzar los tejidos, se convierte en un patógeno extremadamente versátil, capaz de sobrevivir y producir infecciones en casi todos los tejidos y causar enfermedades tan diversas como neumonía, endocarditis, osteomielitis, bacteriemia y abscesos, además de infectar todo tipo de implantes médicos. Según Lasa, “el aumento del conocimiento sobre esta bacteria también puede ayudarnos a combatir sus efectos negativos”.